| 网站首页 | 论文 | 说课 | 教案 | 试题 | 课件 | 中考 | 高考 | 竞赛 | 管理 | 图片 | 艺术 | 数学知识 | 教师 | 学生 | 
| 初一精品课程 | 初二精品课程 | 初三精品课程 | 高一精品课程 | 高二精品课程 | 高三精品课程 |
您现在的位置: 98学习网 >> 说课 >> 高三说课稿 >> 正文
人教A版必修5《等差数列的前n项和》说课         ★★★★
人教A版必修5《等差数列的前n项和》说课
作者:郑永锋 文章来源:网络 点击数: 更新时间:2013/7/6 12:23:15

下载:

人教A版必修5《等差数列的前n项和》说课

《等差数列的前n项和》说课稿
尊敬的各位专家、评委:
上午好!
我叫郑永锋,来自安庆师范学院。今天我说课的课题是人教A版必修5第二章第三节《等差数列的前n项和》。
我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。
一、教材分析
地位和作用
数列是刻画离散现象的函数,是一种重要的属性模型。人们往往通过离散现象认识连续现象,因此就有必要研究数列。
高中数列研究的主要对象是等差、等比两个基本数列。本节课的教学内容是等差数列前n项和公式的推导及其简单应用。
在推导等差数列前n项和公式的过程中,采用了:1.从特殊到一般的研究方法;2.倒叙相加求和。不仅得出来等差数列前n项和公式,而且对以后推导等比数列前n项和公式有一定的启发,也是一种常用的数学思想方法。
等差数列的前n项和是学习极限、微积分的基础,与数学课程的其他内容(函数、三角、不等式等)有着密切的联系。
二、目标分析
(一)、教学目标
1、知识与技能
   掌握等差数列的前n项和公式,能较熟练应用等差数列的前n项和公式求和。
2、过程与方法
经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思。
3、情感、态度与价值观
获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。
(二)、教学重点、难点
1、重点:等差数列的前n项和公式。
2、难点:获得等差数列的前n项和公式推导的思路。
三、教法学法分析
(一)、教法
教学过程分为问题呈现阶段、探索与发现阶段、应用知识阶段。
探索与发现公式推导的思路是教学的重点。如果直接介绍“倒叙相加”求和,无疑就像波利亚所说的“帽子里跳出来的兔子”。所以在教学中采用以问题驱动、层层铺垫,从特殊到一般启发学生获得公式的推导方法。
应用公式也是教学的重点。为了让学生较熟练掌握公式,可采用设计变式题的教学手段,通过“选择公式”,“变用公式”,“知三求二”三个层次来促进学生新的认知结构的形成。
(二)、学法
建构主义学习理论认为,学习是学生积极主动地建构知识的过程,学习应该与学生熟悉的背景相联系。在教学中,让学生在问题情境中,经历知识的形成和发展,通过观察、操作、归纳、探索、交流、反思参与学习,认识和理解数学知识,学会学习,发展能力。
四、教学过程分析
(一)、教学过程设计
1、问题呈现阶段
泰姬陵坐落于印度古都阿格,是世界七大奇迹之一。传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成共有100层。你知道这个图案一共花了多少宝石吗?
设计意图:
(1)、源于历史,富有人文气息。
(2)、承上启下,探讨高斯算法。

2、探究发现阶段
(1)、学生叙述高斯首尾配对的方法(学生对高斯的算法是熟悉的,知道采用首尾配对的方法来求和,但是他们对这种方法的认识可能处于模仿、记忆的阶段。)    
(2)、为了促进学生对这种算法的进一步理解,设计了下面的问题。
 问题1:图案中,第1层到第21层共有多少颗宝石?(这是奇数个项和的问题,不能简单模仿偶数个项求和的方法,需要把中间项11看成是首、尾两项1和21的等差中项。
通过前后比较得出认识:高斯“首尾配对”的算法还得分奇数、偶数个项的情况求和。
(3)、进而提出有无简单的方法。
    借助几何图形的直观性,引导学生使用熟悉的几何方法:把“全等三角形”倒置,与原图补成平行四边形。
获得算法:S21=
设计意图:
几何直观能启迪思路,帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方面,只有做到了直观上的理解,才是真正的理解。因此在教学中,要鼓励学生借助几何直观进行思考,揭示研究对象的性质和关系,从而渗透了数形结合的数学思想。
问题2:求1到n的正整数之和。即Sn=1+2+3+…+n
∵Sn=n+(n-1)+(n-2)+…+1
∴2Sn=(n+1)+(n+1)+….+(n+1)
Sn=  (从求确定的前n个正整数之和到求一般项数的前n个正整数之和,旨在让学生体验“倒叙相加求和”这一算法的合理性,从心理上完成对“首尾配对求和”算法的改进)
由于前面的铺垫,学生容易得出如下过程:
∵Sn=an+an-1+an-2+…a1,
∴Sn= 。
图形直观
等差数列的性质(如果m+n=p+q,那么am+an=ap+aq.)
设计意图:
一言以蔽之,数学教学应努力做到:以简驭繁,平实近人,退朴归真,循循善诱,引人入胜。

3、公式应用阶段
(1)、选用公式
公式1 Sn= ;
公式2 Sn =na1+ 。
(2)、变用公式
(3)、知三求二
例1
某长跑运动员7天里每天的训练量如下7500m,8000m,8500m,9000m,9500m,10000m,10500m。这位长跑运动员7天共跑了多少米?(本例提供了许多数据信息,学生可以从首项、尾项、项数出发,使用公式1,也可以从首项、公差、项数出发,使用公式2求和。达到学生熟悉公式的要素与结构的教学目的。
通过两种方法的比较,引导学生应该根据信息选择适当的公式,以便于计算。)
例2
等差数列-10,-6,-2,2,…的前多少项和为54?(本例已知首项,前n项和、并且可以求出公差,利用公式2求项数。
事实上,在两个求和公式中包含四个元素,从方程的角度,知三必能求余一。)
变式练习:在等差数列{an}中,a1=20,an=54,Sn =999,求n。
知三求二:
例3
在等差数列{an}中,已知d=20,n=37,Sn =629,求a1及an。(本例是使用等差数列的求和公式和通项公式求未知元。
事实上,在求和公式、通项公式中共有首项、公差、项数、尾项、前n项和五个元素,如果已知其中三个,连列方程组,就可以求出其余两个。)
4、当堂训练,巩固深化。
通过学生的主体性参与,使学生深刻体会到本节课的主要内容和思想方法,从而实现对知识的再次深化。
采用课后习题1,2,3.
5、小结归纳,回顾反思。
小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。
(1)、课堂小结
①、回顾从特殊到一般的研究方法;
②、体会等差数列的基本元素的表示方法,倒叙相加的算法,以及数形结合的数学思想。
 ③、掌握等差数列的两个球和公式及简单应用
(2)、反思
     我设计了三个问题
①、通过本节课的学习,你学到了哪些知识?
②、通过本节课的学习,你最大的体验是什么?
③、通过本节课的学习,你掌握了哪些技能?

(二)、作业设计
作业分为必做题和选做题,必做题是对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。
我设计了以下作业:
1、必做题:课本p118,练习1,2,3;
           习题3.3第2题(3,4)。

2、选做题:
  在等差数列中,
  (1)、已知a2+a5+a12+a15=36,求是S16.
  (2)、已知a6=20,求s11.

(三)、板书设计
板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。
五、评价分析
学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。
以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。
谢谢!

 



文章录入:admin    责任编辑:admin 
  • 上一篇文章:

  • 下一篇文章:
  • 【字体: 】【发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口
      网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!)

    最新文章 更多内容
    普通文章《简单的线性规划问题》说课稿-人教A版必修5
    普通文章《等比数列的前n项和》说课稿-北师大版必修5
    普通文章人教A版必修5《等差数列的前n项和》说课
    普通文章人教A版必修5《正弦定理》说课
    普通文章《等比数列》说课稿
    普通文章《随机事件的概率》说课稿
    普通文章《对数函数的图像与性质》说课稿
    普通文章《比较大小》说课
    普通文章《导数的应用》说课稿
    普通文章《锥体的体积》说课
    相关文章
    人教A版必修5《正弦定理》说课
    人教A版必修4《两角和与差的正弦,余弦,正切》说
    人教A版必修4《平面向量的基本定理及其坐标表示》
    人教A版必修4《y=sinA(x+)(A>
    人教A版必修3《古典概型》说课
    人教A版必修2《直线与圆的位置关系》说课
    人教A版必修2《直线与平面平行的判定》说课
    人教A版必修1《对数函数》说课
    人教A版必修1《函数及其表示》说课
    湘教版八年级下数学《正方形》说课稿
    更多内容

    | 设为首页 | 加入收藏 | 联系站长 | 友情链接 | 版权申明 |