| 网站首页 | 论文 | 说课 | 教案 | 试题 | 课件 | 中考 | 高考 | 竞赛 | 管理 | 图片 | 艺术 | 数学知识 | 教师 | 学生 | 
| 初一精品课程 | 初二精品课程 | 初三精品课程 | 高一精品课程 | 高二精品课程 | 高三精品课程 |
您现在的位置: 98学习网 >> 说课 >> 高一说课稿 >> 正文
《导数的几何意义》说课稿         ★★★★
《导数的几何意义》说课稿
作者:未知 文章来源:网络 点击数: 更新时间:2013/7/8 1:39:14

课题:导数的几何意义
教材:北师大版选修2-2
一、说教材:
1、教材的地位与作用
导数是微积分的核心概念之一,它为研究函数提供了有效的方法. 在前面几节课里学生对导数的概念已经有了充分的认识,本节课教材从形的角度即割线入手,用形象直观的“逼近”方法定义了切线,获得导数的几何意义,更有利于学生理解导数概念的本质内涵. 这节课可以利用几何画板进行动画演示,让学生通过观察、思考、发现、思维、运用形成完整概念. 通过本节的学习,可以帮助学生更好的体会导数是研究函数的单调性、变化快慢等性质最有效的工具,是本章的关键内容。
2、教学的重点、难点、关键
教学重点:导数的几何意义、切线方程的求法以及“数形结合,逼近”的思想方法。
教学难点:理解导数的几何意义的本质内涵
1) 从割线到切线的过程中采用的逼近方法;
2) 理解导数的概念,将多方面的意义联系起来,例如,导数反映了函数f(x)在点x附近的变化快慢,导数是曲线上某点切线的斜率,等等.
二、说教学目标:
根据新课程标准的要求、学生的认知水平,确定教学目标如下:
1、知识与技能 :
通过实验探求理解导数的几何意义,理解曲线在一点的切线的概念,会求简单函数在某点的切线方程。
过程与方法:
经历切线定义的形成过程,培养学生分析、抽象、概括等思维能力;体会导数的思想及内涵,完善对切线的认识和理解
通过逼近、数形结合思想的具体运用,使学生达到思维方式的迁移,了解科学的思维方法。
3、情感态度与价值观:
渗透逼近、数形结合、以直代曲等数学思想,激发学生学习兴趣,引导学生领悟特殊与一般、有限与无限,量变与质变的辩证关系,感受数学的统一美,意识到数学的应用价值
说教法与学法
对于直线来说它的导数就是它的斜率,学生会很自然的思考导数在函数图像上是不是有很特殊的几何意义。而且刚刚学过了圆锥曲线,学生对曲线的切线的概念也有了一些认识,基于以上学情分析,我确定下列教法:
教法:从圆的切线的定义引入本课,再引导学生讨论一般曲线的切线的定义,通过几何画板的动画演示,得出曲线的切线的“逼近”法的定义.同样通过几何画板的实验观察得到导数的几何意义和直观感知“逼近”的数学思想.因此,我采用实验观察法、探究性研究教学和信息技术辅助教学法相结合,以突出重点和突破难点;
学法:为了发挥学生的主观能动性,提高学生的综合能力,本节课采取了
自主 、合作、探究的学习方法。
教具: 几何画板、幻灯片
四、说教学程序
1.创设情境
学生活动——问题系列
问题1 平面几何中我们是怎样判断直线是否是圆的割线或切线的呢?


问题2 如图直线l是曲线C的切线吗?

(1)与 (2)与 还有直线与双曲线的位置关系
问题3 那么对于一般的曲线,切线该如何定义呢?
【设计意图】:通过类比构建认知冲突。
学生活动——复习回顾
导数的定义

【设计意图】:从理论和知识基础两方面为本节课作铺垫。
2.探索求知
学生活动——试验探究
问一;求导数的步骤是怎样的?
第一步:求平均变化率;第二步:当趋近于0时,平均变化率无限趋近于的常数就是。
【设计意图】:这是从“数”的角度描述导数,为探究导数的几何意义做准备。
问二;你能借助图像说说平均变化率表示什么吗?请在函数图像中画出来。
【设计意图】:通过学生动手实践得到平均变化率表示割线PQ的斜率。
问三;在的过程中,你能描述一下割线PQ的变化情况吗?请在图像中画出来。
【设计意图】:分别从“数”和“形”的角度描述的过程情况。从数的角度看,,Q();从形的角度看, 的过程中,Q点向P点无限趋近,割线PQ趋近于确定的位置,这个位置的直线叫做曲线在 处的切线。
探究一:学生通过几何画板的演示观察割线的变化趋势,教师引导给出一般曲线的切线定义。


【设计意图】: 借助多媒体教学手段引导学生发现导数的几何意义,使问题变得直观,易于突破难点;学生在过程中,可以体会逼近的思想方法。能够同时从数与形两个角度强化学生对导数概念的理解。
问四;你能从上述过程中概括出函数在处的导数的几何意义吗?
【设计意图】:引导学生发现并说出:,割线PQ切线PT,所以割线
PQ的斜率切线PT的斜率。因此,=切线PT的斜率。
探究二: 解决“问题2”
结论: 圆是一种特殊的曲线,圆的切线的定义并不能适用于一般曲线的切线,有的直线虽然与曲线C有唯一的公共点,但我们不能认为它与曲线C相切。而有的直线虽然与曲线C有且不只一个公共点,我们还是认为它是曲线C的切线。通过逼近的方法,将割线趋于的确定位置的直线定义为切线,适用于各种曲线,所以这种定义才真正反映了切线的直观本质。
问五:研究导数的几何意义有什么作用呢?
?结论:以直代曲是微积分中的重要的思想方法,即以简单的对象(切线)刻画复杂的对象(曲线)。大多数的曲线就一小范围来看,大致可看作直线,所以,某点附近的曲线可以用过此点的切线近似代替,即以直代曲。
3.知识运用
【例题讲解】
例1 .
【理解掌握】
例2
【设计意图】:
【巩固提高】
练习
【设计意图】:
4.小结
(1)你学到了什么?(2)你知道了哪些方法?
【设计意图】: 1、知识性内容的总结,可以把课堂教学传授的知识尽快转化为学生的素质。2、运用数学方法,创新素质的小结能让学生更系统,更深刻地理解数学理想方法在解题中的地位和作用,并且逐渐培养学生的思维能力。
5.作业
五、教学评价
1、通过学生参加活动是否积极主动,能否与他人合作探索,对学生的学习过程评价;
2、通过学生对方法的选择,对学生的学习能力评价;
3、通过练习、课后作业,对学生的学习效果评价.
4、教学中,学生以研究者的身份学习,在问题解决的过程中,通过自身的体验对知识的认识从模糊到清晰,从直观感悟到精确掌握;
5、本节课设计目标力求使学生体会微积分的基本思想,感受近似与精确的统一,运动和静止的统一,感受量变到质变的转化。希望利用这节课渗透辨证法的思想精髓.
六、板书设计


下载完整课件:《导数的几何意义》说课稿


文章录入:admin    责任编辑:admin 
  • 上一篇文章:

  • 下一篇文章:
  • 【字体: 】【发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口
      网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!)

    最新文章 更多内容
    普通文章《直线度斜率》说课稿 -苏教版必修二
    普通文章《正切函数的性质与图像》说课稿-高一
    普通文章《概率的应用》说课稿
    普通文章《旋转变换》说课稿
    普通文章《归纳推理》说课稿-人教版选修1
    普通文章《导数的几何意义》说课稿
    普通文章《同角三角函数的基本关系》说课稿-人教版
    普通文章《同角三角函数关系》说课稿
    普通文章《两角差的余弦公式》 的说课稿-人教版必修四
    普通文章人教A版必修2《直线与圆的位置关系》说课
    相关文章
    《解直角三角形》说课稿
    《简单的线性规划问题》说课稿-人教A版必修5
    《等比数列的前n项和》说课稿-北师大版必修5
    《直线度斜率》说课稿 -苏教版必修二
    《直线和椭圆位置关系》说课稿-高二
    《生活中的立体图形》说课稿-华东西大版七年级上
    《正切函数的性质与图像》说课稿-高一
    《概率的应用》说课稿
    《梯形》说课稿-人教版八年级下册
    《旋转变换》说课稿
    更多内容

    | 设为首页 | 加入收藏 | 联系站长 | 友情链接 | 版权申明 |