| 网站首页 | 论文 | 说课 | 教案 | 试题 | 课件 | 中考 | 高考 | 竞赛 | 管理 | 软件 | 图片 | 艺术 | 数学知识 | 教师 | 学生 | 
站内搜索:
您现在的位置: 中学数学网 >> 教案 >> 新人教版 >> 高中必修一 >> 教案信息
3.2.2函数模型的应用实例(Ⅱ)教案(人教版必修1)
作者:未知 文章来源:网上收集 点击数: 更新时间:2013-8-16 21:52:02

简介
3 .2 .2 函数模型的应用实例(Ⅱ)
一、学习目标
1. 能够利用给定的函数模型或建立确定性函数模型解决实际问题.
2. 掌握运用函数概念建立函数模型的过程和方法,对给定的函数模型进行简单的分析评价.
二、学习重点
重点 : 利用给定的函数模型或建立确定性质函数模型解决实际问题.
难点: 将实际问题转化为数学模型,并对给定的函数模型进行简单的分析评价.
三、 教学设想
(一)创设情景,揭示课题.
现实生活中有些实际问题所涉及的数学模型是确定的,但需我们利用问题中的数据及其蕴含的关系来建立. 对于已给定数学模型的问题,我们要对所确定的数学模型进行分析评价,验证数学模型的与所提供的数据的吻合程度.
(二)实例尝试,探求新知
例1 人口问题是当今世界各国普遍关注的问题,认识人口数量的变化规律,可以为有效控制人口增长提供依据. 早在1798,英国经济家马尔萨斯就提出了自然状态下的人口增长模型:

其中 表示经过的时间, 表示 时的人口数, 表示人口的年均增长率.
下表是1950~1959年我国的人口数据资料:(单位:万人)
年份
1950
1951
1952
1953
1954

人数
55196
56300
57482
58796
60266

年份
1955
1956
1957
1958
1959

人数






 1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;
2)如果按表中的增长趋势,大约在哪一年我国的人口将达到13亿?
探索以下问题:
1)本例中所涉及的数量有哪些?
2)描述所涉及数量之间关系的函数模型是否是确定的,确定这种模型需要几个因素?
3)根据表中数据如何确定函数模型?
4)对于所确定的函数模型怎样进行检验,根据检验结果对函数模型又应做出如何评价?

例2 .2005年10月12日,我国成功发射了“神舟”六号载人飞船,这标志着中国人民又迈出了具有历史意义的一步。已知火箭的起飞质量m是载体的质量 和燃料质量x之和。在不考虑空气阻力的情况下,假设火箭的最大速度y关于x的函数关系式为:
(其中k 0)当燃料质量为 吨(e为自然对数的底, )时,该火箭的最大速度为4km/m
求火箭的最大速度ykm/m与燃料质量x吨之间的函数关系式y=f(x);
已知该火箭的起飞质量是544吨,则应装载多少吨燃料,才能使该火箭的最大飞行速度达到8km/s,顺利地把飞船发送到预定的轨道?

课堂练习:
1、某工厂今年1月、2月、3月生产某种产品的数量分别为1万件,1.2万件,1.3万件,为了估计以后每个月的产量,以这三个月的产品数量为依据用一个函数模拟该产品的月产量 与月份的 关系,模拟函数可以选用二次函数或函数 .已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.

2、 练习1
(三)归纳小结,发展思维.
利用给定函数模型或建立确定的函数模型解决实际问题的方法;
1)根据题意选用恰当的函数模型来描述所涉及的数量之间的关系;
2)利用待定系数法,确定具体函数模型;
3)对所确定的函数模型进行适当的评价;
4)根据实际问题对模型进行适当的修正.
从以上各例体会到:根据收集到的数据,作出散点图,然后通过观察图象,判断问题适用的函数模型,借助计算器或计算机数据处理功能,利用待定系数法得出具体的函数解析式,再利用得到的函数模型解决相应的问题,这是函数应用的一个基本过程.
图象、表格和解析式都可能是函数对应关系的表现形式. 在实际应用时,经常需要将函数对应关系的一种形式向另一种转化.
(四)布置作业:教材P107习题3.2(A组)第5题.


免费下载地址下载地址1  下载地址2  

录入:admin审核:admin
最新文章 更多内容
普通教案初高中知识衔接(一元二次不等式、绝对值不
普通教案3.2.2函数模型的应用实例(Ⅱ)教案(人教版
普通教案数学必修1复习导学案教案(人教版必修1)
普通教案3.2.1.2几类不同增长的函数模型教案(人教版
普通教案幂函数通案教案(人教版必修1)
普通教案函数的表示法教案(人教版必修1)
普通教案2012—2013学年度上期数学教学工作计划_高一
普通教案1、1、2集合间的基本关系教案(人教版必修1
普通教案1、1、1集合的含义与表示教案(人教版必修1
普通教案人教版高中数学必修1学案全套教案(人教版必
相关软件
初高中知识衔接(一元二次不等式、绝对值不等式、分式
数学必修1复习导学案教案(人教版必修1)
3.2.1.2几类不同增长的函数模型教案(人教版必修1)
幂函数通案教案(人教版必修1)
函数的表示法教案(人教版必修1)
更多内容
| 设为首页 | 加入收藏 | 联系站长 | 友情链接 | 版权申明 | 管理登录 |