| 网站首页 | 论文 | 说课 | 教案 | 试题 | 课件 | 中考 | 高考 | 竞赛 | 管理 | 软件 | 图片 | 艺术 | 数学知识 | 教师 | 学生 | 
站内搜索:
您现在的位置: 中学数学网 >> 中考 >> 试题汇编 >> 中考信息
2013全国中考数学试题分类汇编-正多边形和圆
作者:未知 文章来源:网上收集 点击数: 更新时间:2013-7-21 22:52:52

简介
(2013?郴州)如图,AB是⊙O的直径,点C是圆上一点,∠BAC=70°,则∠OCB= 20 °.

考点:
圆周角定理.3718684

分析:
根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半得:∠BOC=2∠BAC,在等腰三角形OBC中可求出∠OCB.

解答:
解:∵⊙O是△ABC的外接圆,∠BAC=70°,
∴∠B0C=2∠BAC=2×70°=140°,
∵OC=OB(都是半径),
∴∠OCB=∠OBC=(180°﹣∠BOC)=20°.
故答案为:20°.

点评:
此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.

(2013?郴州)圆锥的侧面积为6πcm2,底面圆的半径为2cm,则这个圆锥的母线长为 3 cm.
考点:
圆锥的计算.3718684

分析:
圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.

解答:
解:设母线长为R,底面半径是2cm,则底面周长=4π,侧面积=2πR=6π,
∴R=3.
故答案为:3.

点评:
本题利用了圆的周长公式和扇形面积公式求解.比较基础,重点是掌握公式.

 
(2013?衡阳)如图,在⊙O中,∠ABC=50°,则∠AOC等于(  )

 
A.
50°
B.
80°
C.
90°
D.
100°


考点:
圆周角定理.

分析:
因为同弧所对圆心角是圆周角的2倍,即∠AOC=2∠ABC=100°.

解答:
解:∵∠ABC=50°,
∴∠AOC=2∠ABC=100°.
故选D.

点评:
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

 
(2013?衡阳)如图,要制作一个母线长为8cm,底面圆周长是12πcm的圆锥形小漏斗,若不计损耗,则所需纸板的面积是 48πcm2 .

考点:
圆锥的计算.3718684

专题:
计算题.

分析:
圆锥的侧面积=底面周长×母线长÷2.

解答:
解:圆锥形小漏斗的侧面积=×12π×8=48πcm2.
故答案为48πcm2.

点评:
本题考查了圆锥的计算,圆锥的侧面积=×底面周长×母线长

(2013?衡阳)如图,在平面直角坐标系中,已知A(8,0),B(0,6),⊙M经过原点O及点A、B.
(1)求⊙M的半径及圆心M的坐标;
(2)过点B作⊙M的切线l,求直线l的解析式;
(3)∠BOA的平分线交AB于点N,交⊙M于点E,求点N的坐标和线段OE的长.

考点:
圆的综合题.

专题:
综合题.

分析:
(1)根据圆周角定理∠AOB=90°得AB为⊙M的直径,则可得到线段AB的中点即点M的坐标,然后利用勾股定理计算出AB=10,则可确定⊙M的半径为5;
(2)点B作⊙M的切线l交x轴于C,根据切线的性质得AB⊥BC,利用等角的余角相等得到∠BAO=∠CBO,然后根据相似三角形的判定方法有Rt△ABO∽Rt△BCO,所以=,可解得OC=,则C点坐标为(﹣,0),最后运用待定系数法确定l的解析式;
(3)作ND⊥x轴,连结AE,易得△NOD为等腰直角三角形,所以ND=OD,ON=ND,再利用ND∥OB得到△ADN∽△AOB,则ND:OB=AD:AO,即ND:6=(8﹣ND):8,解得ND=,所以OD=,ON=,即可确定N点坐标;由于△ADN∽△AOB,利用ND:OB=AN:AB,可求得AN=,则BN=10﹣=,然后利用圆周角定理得∠OBA=OEA,∠BOE=∠BAE,所以△BON∽△EAN,再利用相似比可求出ME,最后由OE=ON NE计算即可.

解答:
解:(1)∵∠AOB=90°,
∴AB为⊙M的直径,
∵A(8,0),B(0,6),
∴OA=8,OB=6,
∴AB==10,
∴⊙M的半径为5;圆心M的坐标为((4,3);
(2)点B作⊙M的切线l交x轴于C,如图,
∵BC与⊙M相切,AB为直径,
∴AB⊥BC,
∴∠ABC=90°,
∴∠CBO ∠ABO=90°,
而∠BAO=∠ABO=90°,
∴∠BAO=∠CBO,
∴Rt△ABO∽Rt△BCO,
∴=,即=,解得OC=,
∴C点坐标为(﹣,0),
设直线BC的解析式为y=kx b,
把B(0,6)、C点(﹣,0)分别代入,
解得,
∴直线l的解析式为y=x 6;
(3)作ND⊥x轴,连结AE,如图,
∵∠BOA的平分线交AB于点N,
∴△NOD为等腰直角三角形,
∴ND=OD,
∴ND∥OB,
∴△ADN∽△AOB,
∴ND:OB=AD:AO,
∴ND:6=(8﹣ND):8,解得ND=,
∴OD=,ON=ND=,
∴N点坐标为(,);
∵△ADN∽△AOB,
∴ND:OB=AN:AB,即:6=AN:10,解得AN=,
∴BN=10﹣=,
∵∠OBA=OEA,∠BOE=∠BAE,
∴△BON∽△EAN,
∴BN:NE=ON:AN,即:NE=:,解得NE=,
∴OE=ON NE= =7.


点评:
本题考查了圆的综合题:掌握切线的性质、圆周角定理及其推论;学会运用待定系数法求函数的解析式;熟练运用勾股定理和相似比进行几何计算.

(2013,娄底)如图,、相交于、两点,两圆半径分别为和,两圆的连心线的长为,则弦的长为(  )

A.   B.   C.   D.
(2013,娄底)如图,将直角三角板角的顶点放在圆心上,斜边和一直角边分别与相交于、两点,是优弧上任意一点(与、不重合),则____________.

(2013,娄底)一圆锥的底面半径为,母线长,则该圆锥的侧面积为___________.
(2013?湘西州)下列图形中,是圆锥侧面展开图的是(  )

 
A.

B.

C.

D.



考点:
几何体的展开图.

分析:
根据圆锥的侧面展开图的特点作答.

解答:
解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.
故选B.

点评:
考查了几何体的展开图,圆锥的侧面展开图是扇形.

(2013?湘西州)已知⊙O1与⊙O2的半径分别为3cm和5cm,若圆心距O1O2=8cm,则⊙O1与⊙O2的位置关系是(  )
 
A.
相交
B.
相离
C.
内切
D.
外切


考点:
圆与圆的位置关系.3718684

分析:
由两圆的半径分别为3cm和5cm,圆心距为8cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.

解答:
解:∵两圆的半径分别为3cm和5cm,圆心距为8cm,
又∵5 3=8,
∴两圆的位置关系是:外切.
故选D.

点评:
此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.

(2013?益阳)如图,若AB是⊙O的直径,AB=10cm,∠CAB=30°,则BC= 5 cm.

考点:
圆周角定理;含30度角的直角三角形.

分析:
根据圆周角定理可得出△ABC是直角三角形,再由含30°角的直角三角形的性质即可得出BC的长度.

解答:
解:∵AB是⊙O的直径,
∴∠ACB=90°,
又∵AB=10cm,∠CAB=30°,
∴BC=AB=5cm.
故答案为:5.

点评:
本题考查了圆周角定理及含30°角的直角三角形的性质,解答本题的关键是根据圆周角定理判断出∠ACB=90°.

(2013,永州)如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A,若∠MAB=,则∠B= 度.


(2013,永州)如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=,
D为的中点.
(1)求证:AB=BC
(2)求证:四边形BOCD是菱形..

2013?株洲)如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是 48 度.

考点:
垂径定理.

分析:
根据点D是弦AC的中点,得到OD⊥AC,然后根据∠DOC=∠DOA即可求得答案.

解答:
解:∵AB是⊙O的直径,
∴OA=OC
∵∠A=42°
∴∠ACO=∠A=42°
∵D为AC的中点,
∴OD⊥AC,
∴∠DOC=90°﹣∠DCO=90°﹣42°=48°.
故答案为:48.

点评:
本题考查了垂径定理的知识,解题的关键是根的弦的中点得到弦的垂线.

(2013?株洲)已知AB是⊙O的直径,直线BC与⊙O相切于点B,∠ABC的平分线BD交⊙O于点D,AD的延长线交BC于点C.
(1)求∠BAC的度数;
(2)求证:AD=CD.

考点:
切线的性质;等腰直角三角形;圆周角定理.3718684

分析:
(1)由AB是⊙O的直径,易证得∠ADB=90°,又由∠ABC的平分线BD交⊙O于点D,易证得△ABD≌△CBD,即可得△ABC是等腰直角三角形,即可求得∠BAC的度数;
(2)由AB=CB,BD⊥AC,利用三线合一的知识,即可证得AD=CD.

解答:
解:(1)∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠CDB=90°,BD⊥AC,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
在△ABD和△CBD中,
,
∴△ABD≌△CBD(ASA),
∴AB=CB,
∵直线BC与⊙O相切于点B,
∴∠ABC=90°,
∴∠BAC=∠C=45°;
(2)证明:∵AB=CB,BD⊥AC,
∴AD=CD.

点评:
此题考查了切线的性质、全等三角形的判定与性质以及等腰三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.

 (2013?巴中)如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于(  )

 
A.
116°
B.
32°
C.
58°
D.
64°


考点:
圆周角定理.245761

分析:
由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠ADB=90°,继而求得∠A的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得答案.

解答:
解:∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠ABD=58°,
∴∠A=90°﹣∠ABD=32°,
∴∠BCD=∠A=32°.
故选B.

点评:
此题考查了圆周角定理与直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.


(2013?巴中)底面半径为1,母线长为2的圆锥的侧面积等于 2π .
考点:
圆锥的计算.245761

分析:
根据圆锥的侧面积就等于母线长乘底面周长的一半.依此公式计算即可解决问题.

解答:
解:圆锥的侧面积=2×2π÷2=2π.
故答案为:2π.

点评:
本题主要考查了圆锥的侧面积的计算公式.熟练掌握圆锥侧面积公式是解题关键.

(2013?巴中)若⊙O1和⊙O2的圆心距为4,两圆半径分别为r1、r2,且r1、r2是方程组的解,求r1、r2的值,并判断两圆的位置关系.
考点:
圆与圆的位置关系;解二元一次方程组.245761

分析:
首先由r1、r2是方程组的解,解此方程组即可求得答案;又由⊙O1和⊙O2的圆心距为4,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系得出两圆位置关系.

解答:
解:∵,
①×3﹣②得:11r2=11,
解得:r2=1,
吧r2=1代入①得:r1=4;
∴,
∵⊙O1和⊙O2的圆心距为4,
∴两圆的位置关系为相交.

点评:
此题考查了圆与圆的位置关系与方程组的解法.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.

 
(2013,成都)如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为( )
(A)40°
(B)50°
(C)80°
(D)100°
(2013,成都)如图, 在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°
(1)画出旋转之后的△
(2)求线段AC旋转过程中扫过的扇形的面积
(1)略 (2)
(2013,成都)如图,⊙的半径,四边形内接圆⊙,于点,为延长线上的一点,且.
(1)试判断与⊙的位置关系,并说明理由:
(2)若,,求的长;
(3)在(2)的条件下,求四边形的面积.
(1)如图,连接DO并延长交圆于点E,连接AE
∵DE是直径,∴∠DAE=90°,
∴∠E ∠ADE=90°
∵∠PDA=∠ADB=∠E
∴∠PDA ∠ADE=90°即PD⊥DO
∴PD与圆O相切于点D
(2) ∵tan∠ADB=
∴可设AH=3k,则DH=4k
∵
∴PA=
∴PH=
∴∠P=30°,∠PDH=60°
∴∠BDE=30°
连接BE,则∠DBE=90°,DE=2r=50
∴BD=DE·cos30°=
(3)由(2)知,BH=-4k,∴HC=(-4k)
又∵
∴
解得k=
∴AC=
∴S=
(2013?达州)如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E为弧CD上一点,且OE⊥CD,垂足为F,OF=米,则这段弯路的长度为( )
A.200π米 B.100π米
C.400π米 D.300π米
答案:A
解析:CF=300,OF=,所以,∠COF=30°,∠COD=60°,
OC=600,因此,弧CD的长为:=200π米
(2013?德州)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆.则图中阴影部分的面积为
A. B.
C.  D.
(2013?德州)如图,已知⊙O的半径为1,DE是⊙O的直径,过D点作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,若四边形BCOE是平行四边形,
(1)求AD的长;
(2)BC是⊙O的切线吗?若是,
给出证明;若不是,说明理由.

(3分)(2013?广安)如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为(  )

 
A.
cm
B.
5cm
C.
4cm
D.
cm


考点:
垂径定理;勾股定理.3718684

分析:
连接AO,根据垂径定理可知AC=AB=4cm,设半径为x,则OC=x﹣3,根据勾股定理即可求得x的值.

解答:
解:连接AO,
∵半径OD与弦AB互相垂直,
∴AC=AB=4cm,
设半径为x,则OC=x﹣3,
在Rt△ACO中,AO2=AC2 OC2,
即x2=42 (x﹣3)2,
解得:x=,
故半径为cm.
故选A.


点评:
本题考查了垂径定理及勾股定理的知识,解答本题的关键是熟练掌握垂径定理、勾股定理的内容,难度一般.

如图,如果从半径为5cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高是 3 cm.

考点:
圆锥的计算.3718684

分析:
因为圆锥的高,底面半径,母线构成直角三角形,则留下的扇形的弧长==8π,所以圆锥的底面半径r==4cm,利用勾股定理求圆锥的高即可;

解答:
解:∵从半径为5cm的圆形纸片上剪去圆周的一个扇形,
∴留下的扇形的弧长==8π,
根据底面圆的周长等于扇形弧长,
∴圆锥的底面半径r==4cm,
∴圆锥的高为=3cm
故答案为:3.

点评:
此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.解此类题目要根据所构成的直角三角形的勾股定理作为等量关系求解.


(2013?广安)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙0,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.
(1)求证:EF是⊙0的切线.
(2)如果⊙0的半径为5,sin∠ADE=,求BF的长.

考点:
切线的判定;等腰三角形的性质;圆周角定理;解直角三角形.3718684

分析:
(1)连结OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;
(2)由∠DAC=∠DAB,根据等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可计算出AD=8,在Rt△ADE中可计算出AE=,然后由OD∥AE,
得△FDO∽△FEA,再利用相似比可计算出BF.

解答:
(1)证明:连结OD,如图,
∵AB为⊙0的直径,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴AD平分BC,即DB=DC,
∵OA=OB,
∴OD为△ABC的中位线,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∴EF是⊙0的切线;
(2)解:∵∠DAC=∠DAB,
∴∠ADE=∠ABD,
在Rt△ADB中,sin∠ADE=sin∠ABD==,而AB=10,
∴AD=8,
在Rt△ADE中,sin∠ADE==,
∴AE=,
∵OD∥AE,
∴△FDO∽△FEA,
∴=,即=,
∴BF=.


点评:
本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了等腰三角形的性质、圆周角定理和解直角三角形.

 
(2013?乐山)一个立体图形的三视图如图4所示,www.zx98.com
根据图中数据求得这个立体图形的表面积为
A.2Π B.6П C.7П D.8П
(2013?乐山)如图5,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,-7)的直线l与⊙B相交于C、D两点,则弦CD长的所有可能的整数值有( )个。
A.1 B.2 C.3 D.4

(2013?乐山)如图8,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为 。

(2013?乐山从甲、乙两题中选做一题,如果两题都做,只以甲题计分。
题甲:如图12,AB是⊙O的直径,经过圆上点D的直线CD恰使∠ADC=∠B.
求证:直线CD是⊙O的切线;
过点A作直线AB的垂线交BD的延长线于点E,且AB=,BD=2,求线段AE的长.
(2013凉山州)已知⊙O1和⊙O2的半径分别为2cm和3cm,圆心距O1O2为5cm,则⊙O1和⊙O2的位置关系是(  )
 A.外离B.外切C.相交D.内切
考点:圆与圆的位置关系.
分析:由⊙O1与⊙O2的半径分别为2cm和3cm,且圆心距O1O2为5cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.
解答:解:∵⊙与⊙O2的半径分别为2cm和3cm,且圆心距O1O2为5cm,
又∵2 3=5,
∴两圆的位置关系是外切.
故选B.
点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系. 
(2013凉山州)如图,Rt△ABC中,∠C=90°,AC=8,BC=6,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为 .

考点:扇形面积的计算;勾股定理;相切两圆的性质.
专题:计算题.
分析:根据题意,可得阴影部分的面积等于圆心角为90°的扇形的面积.
解答:解:∵∠C=90°,AC=8,BC=6,
∴AB=10,
∴扇形的半径为5,
∴阴影部分的面积==π.
点评:解决本题的关键是把两个阴影部分的面积整理为一个规则扇形的面积. 
(2013凉山州)在同一平面直角坐标系中有5个点:A(1,1),B(﹣3,﹣1),C(﹣3,1),D(﹣2,﹣2),E(0,﹣3).
(1)画出△ABC的外接圆⊙P,并指出点D与⊙P的位置关系;
(2)若直线l经过点D(﹣2,﹣2),E(0,﹣3),判断直线l与⊙P的位置关系.

考点:直线与圆的位置关系;点与圆的位置关系;作图—复杂作图.
专题:探究型.
分析:(1)在直角坐标系内描出各点,画出△ABC的外接圆,并指出点D与⊙P的位置关系即可;
(2)连接OD,用待定系数法求出直线PD与PE的位置关系即可.
解答:解:(1)如图所示:△ABC外接圆的圆心为(﹣1,0),点D在⊙P上;
(2)连接OD,
设过点P、D的直线解析式为y=kx b,
∵P(﹣1,0)、D(﹣2,﹣2),
∴,
解得,
∴此直线的解析式为y=2x 2;
设过点D、E的直线解析式为y=ax c,
∵D(﹣2,﹣2),E(0,﹣3),
∴,
解得,
∴此直线的解析式为y=﹣x﹣3,
∵2×(﹣)=﹣1,
∴PD⊥PE,
∵点D在⊙P上,
∴直线l与⊙P相切.

点评:本题考查的是直线与圆的位置关系,根据题意画出图形,利用数形结合求解是解答此题的关键
(2013?泸州)已知的直径CD=10cm,AB是的弦,,垂足为M,且AB=8cm,则AC的长为
A. B.  C. 或 D. 或
(2013?泸州)如图,从半径为9的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为 .


(2013?泸州)如图,D为上一点,点C在直径BA的延长线上,且.
(1)求证:;
(2)求证:是的切线;
(3)过点B作的切线交CD的延长线于点E,若BC=12,,求BE的长.

(2013?眉山)用一圆心角为120°,半径为6cm的扇形做成一个圆锥的侧面,这个圆锥的底面的半径是
A.1cm B.2cm C.3cm D.4cm
(2013?眉山)如图,以BC为直径的⊙O与△ABC的另两边分别相交于点D、E。若∠A=60°,BC=4,则图中阴影部分的面积为______。(结果保留π)

2013?绵阳)如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE。
(1)判断CD与⊙O的位置关系,并证明你的结论;
(2)若E是的中点,⊙O的半径为1,求图中阴影部分的面积。


12.(3分)(2013?内江)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为(  )

 
A.
cm
B.
cm
C.
cm
D.
4cm


考点:
圆心角、弧、弦的关系;全等三角形的判定与性质;勾股定理.

分析:
连接OD,OC,作DE⊥AB于E,OF⊥AC于F,运用圆周角定理,可证得∠DOB=∠OAC,即证△AOF≌△OED,所以OE=AF=3cm,根据勾股定理,得DE=4cm,在直角三角形ADE中,根据勾股定理,可求AD的长.

解答:
解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,

∵∠CAD=∠BAD(角平分线的性质),
∴=,
∴∠DOB=∠OAC=2∠BAD,
∴△AOF≌△OED,
∴OE=AF=AC=3cm,
在Rt△DOE中,DE==4cm,
在Rt△ADE中,AD==4cm.
故选A.

点评:
本题考查了翻折变换及圆的有关计算,涉及圆的题目作弦的弦心距是常见的辅助线之一,注意熟练运用垂径定理、圆周角定理和勾股定理.

 (2013?内江)如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置,若正六边形的边长为2cm,则正六边形的中心O运动的路程为 4π cm.

考点:
正多边形和圆;弧长的计算;旋转的性质.

分析:
每次滚动正六边形的中心就以正六边形的半径为半径旋转60°,然后计算出弧长,最后乘以六即可得到答案.

(2013?内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k 4与⊙O交于B、C两点,则弦BC的长的最小值为 24 .
考点:
一次函数综合题.

分析:
根据直线y=kx﹣3k 4必过点D(3,4),求出最短的弦CD是过点D且与该圆直径垂直的弦,再求出OD的长,再根据以原点O为圆心的圆过点A(13,0),求出OB的长,再利用勾股定理求出BD,即可得出答案.

解答:
解:∵直线y=kx﹣3k 4必过点D(3,4),
∴最短的弦CD是过点D且与该圆直径垂直的弦,
∵点D的坐标是(3,4),
∴OD=5,
∵以原点O为圆心的圆过点A(13,0),
∴圆的半径为13,
∴OB=13,
∴BD=12,
∴BC的长的最小值为24;
故答案为:24.


点评:
此题考查了一次函数的综合,用到的知识点是垂径定理、勾股定理、圆的有关性质,关键是求出BC最短时的位置.

:
解:根据题意得:每次滚动正六边形的中心就以正六边形的半径为半径旋转60°,
正六边形的中心O运动的路程∵正六边形的边长为2cm,
∴运动的路径为:=;
∵从图1运动到图2共重复进行了六次上述的移动,
∴正六边形的中心O运动的路程6×=4πcm
故答案为4π.


点评:
本题考查了正多边形和圆的、弧长的计算及旋转的性质,解题的关键是弄清正六边形的中心运动的路径.

(2013?内江)如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.
(1)求证:BC平分∠PDB;
(2)求证:BC2=AB?BD;
(3)若PA=6,PC=6,求BD的长.

考点:
切线的性质;相似三角形的判定与性质.

专题:
计算题.

分析:
(1)连接OC,由PD为圆O的切线,利用切线的性质得到OC垂直于PD,由BD垂直于PD,得到OC与BD平行,利用两直线平行得到一对内错角相等,再由OC=OB,利用等边对等角得到一对角相等,等量代换即可得证;
(2)连接AC,由AB为圆O的直径,利用直径所对的圆周角为直角得到△ABC为直角三角形,根据一对直角相等,以及第一问的结论得到一对角相等,确定出△ABC与△BCD相似,由相似得比例,变形即可得证;
(3)由切割线定理列出关系式,将PA,PC的长代入求出PB的长,由PB﹣PA求出AB的长,确定出圆的半径,由OC与BD平行得到△PCO与△DPB相似,由相似得比例,将OC,OP,以及PB的长代入即可求出BD的长.

解答:
(1)证明:连接OC,
∵PD为圆O的切线,
∴OC⊥PD,
∵BD⊥PD,
∴OC∥BD,
∴∠OCB=∠CBD,
∵OC=OB,
∴∠OCB=∠OBC,
∴∠CBD=∠OBC,
则BC平分∠PBD;
(2)证明:连接AC,
∵AB为圆O的直径,
∴∠ACB=90°,
∵∠ACB=∠CDB=90°,∠ABC=∠CBD,
∴△ABC∽△CBD,
∴=,即BC2=AB?BD;
(3)解:∵PC为圆O的切线,PAB为割线,
∴PC2=PA?PB,即72=6PB,
解得:PB=12,
∴AB=PB﹣PA=12﹣6=6,
∴OC=3,PO=PA AO=9,
∵△OCP∽△BDP,
∴=,即=,
则BD=4.


点评:
此题考查了切线的性质,相似三角形的判定与性质,熟练掌握切线的性质是解本题的关键.

(2013?遂宁)用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为(  )
 
A.
2πcm
B.
1.5cm
C.
πcm
D.
1cm


考点:
圆锥的计算.

分析:
把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.

解答:
解:设此圆锥的底面半径为r,
根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,
2πr=,
解得:r=1cm.
故选D.

点评:
主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.

 
(2013?遂宁)如图,△ABC的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点B逆时针旋转到△A′BC′的位置,且点A′、C′仍落在格点上,则图中阴影部分的面积约是 7.2 .(π≈3.14,结果精确到0.1)

考点:
扇形面积的计算;旋转的性质.

分析:
扇形BAB'的面积减去△BB'C'的面积即可得出阴影部分的面积.

解答:
解:由题意可得,AB=BB'==,∠ABB'=90°,
S扇形BAB'==,S△BB'C'=BC'×B'C'=3,
则S阴影=S扇形BAB'﹣S△BB'C'=﹣3≈7.2.
故答案为:7.2.

点评:
本题考查了扇形的面积计算,解答本题的关键是求出扇形的半径,及阴影部分面积的表达式.

(2013?遂宁)如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.
(1)求证:CF是⊙O的切线;
(2)求证:△ACM∽△DCN;
(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC=,求BN的长.

考点:
圆的综合题.

分析:
(1)根据切线的判定定理得出∠1 ∠BCO=90°,即可得出答案;
(2)利用已知得出∠3=∠2,∠4=∠D,再利用相似三角形的判定方法得出即可;
(3)根据已知得出OE的长,进而利用勾股定理得出EC,AC,BC的长,即可得出CD,利用(2)中相似三角形的性质得出NB的长即可.

解答:
(1)证明:∵△BCO中,BO=CO,
∴∠B=∠BCO,
在Rt△BCE中,∠2 ∠B=90°,
又∵∠1=∠2,
∴∠1 ∠BCO=90°,
即∠FCO=90°,
∴CF是⊙O的切线;
(2)证明:∵AB是⊙O直径,
∴∠ACB=∠FCO=90°,
∴∠ACB﹣∠BCO=∠FCO﹣∠BCO,
即∠3=∠1,
∴∠3=∠2,
∵∠4=∠D,
∴△ACM∽△DCN;
(3)解:∵⊙O的半径为4,即AO=CO=BO=4,
在Rt△COE中,cos∠BOC=,
∴OE=CO?cos∠BOC=4×=1,
由此可得:BE=3,AE=5,由勾股定理可得:
CE===,
AC===2,
BC===2,
∵AB是⊙O直径,AB⊥CD,
∴由垂径定理得:CD=2CE=2,
∵△ACM∽△DCN,
∴=,
∵点M是CO的中点,CM=AO=×4=2,
∴CN===,
∴BN=BC﹣CN=2﹣=.


点评:
此题主要考查了相似三角形的判定与性质以及切线的判定和勾股定理的应用等知识,根据已知得出△ACM∽△DCN是解题关键.

(2013?雅安)如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则sin∠E的值为(  )

 
A.

B.

C.

D.



考点:
切线的性质;圆周角定理;特殊角的三角函数值.

分析:
首先连接OC,由CE是⊙O切线,可得OC⊥CE,由圆周角定理,可得∠BOC=60°,继而求得∠E的度数,则可求得sin∠E的值.

解答:
解:连接OC,
∵CE是⊙O切线,
∴OC⊥CE,
即∠OCE=90°,
∵∠CDB=30°,
∴∠COB=2∠CDB=60°,
∴∠E=90°﹣∠COB=30°,
∴sin∠E=.
故选A.


点评:
此题考查了切线的性质、圆周角定理以及特殊角的三角函数值.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.

(2013?雅安)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.
(1)求证:CD为⊙O的切线;
(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)

考点:
切线的判定与性质;扇形面积的计算.

分析:
(1)首先连接OD,由BC是⊙O的切线,可得∠ABC=90°,又由CD=CB,OB=OD,易证得∠ODC=∠ABC=90°,即可证得CD为⊙O的切线;
(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的长,∠BOD的度数,又由S阴影=S扇形OBD﹣S△BOD,即可求得答案.

解答:
(1)证明:连接OD,
∵BC是⊙O的切线,
∴∠ABC=90°,
∵CD=CB,
∴∠CBD=∠CDB,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠ODC=∠ABC=90°,
即OD⊥CD,
∵点D在⊙O上,
∴CD为⊙O的切线;
(2)解:在Rt△OBF中,
∵∠ABD=30°,OF=1,
∴∠BOF=60°,OB=2,BF=,
∵OF⊥BD,
∴BD=2BF=2,∠BOD=2∠BOF=120°,
∴S阴影=S扇形OBD﹣S△BOD=﹣×2×1=π﹣.


点评:
此题考查了切线的判定与性质、垂径定理以及扇形的面积.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.

 (2013宜宾)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是 4π .

考点:弧长的计算;等边三角形的性质.
分析:弧CD,弧DE,弧EF的圆心角都是120度,半径分别是1,2,3,利用弧长的计算公式可以求得三条弧长,三条弧的和就是所求曲线的长.
解答:解:弧CD的长是=,
弧DE的长是:=,
弧EF的长是:=2π,
则曲线CDEF的长是:  2π=4π.
故答案是:4π.
点评:本题考查了弧长的计算公式,理解弧CD,弧DE,弧EF的圆心角都是120度,半径分别是1,2,3是解题的关键. 
(2013宜宾)如图,AB是⊙O的直径,∠B=∠CAD.
(1)求证:AC是⊙O的切线;
(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.

考点:切线的判定;相似三角形的判定与性质.
分析:(1)证明△ADC∽△BAC,可得∠BAC=∠ADC=90°,继而可判断AC是⊙O的切线.
(2)根据(1)所得△ADC∽△BAC,可得出CA的长度,继而判断∠CFA=∠CAF,利用等腰三角形的性质得出AF的长度,继而得出DF的长,在Rt△AFD中利用勾股定理可得出AF的长.
解答:解:(1)∵AB是⊙O的直径,
∴∠ADB=∠ADC=90°,
∵∠B=∠CAD,∠C=∠C,
∴△ADC∽△BAC,
∴∠BAC=∠ADC=90°,
∴BA⊥AC,
∴AC是⊙O的切线.
(2)∵△ADC∽△BAC(已证),
∴=,即AC2=BC×CD=36,
解得:AC=6,
在Rt△ACD中,AD==2,
∵∠CAF=∠CAD ∠DAE=∠ABF ∠BAE=∠AFD,
∴CA=CF=6,
∴DF=CA﹣CD=2,
在Rt△AFD中,AF==2.
点评:本题考查了切线的判定、相似三角形的判定与性质,解答本题的关键是熟练掌握切线的判定定理、相似三角形的性质,勾股定理的表达式. 
(2013?资阳)钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是 A
A.B.C.D.
(2013?资阳)在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.
(1)如图5-1,若点D与圆心O重合,AC=2,求⊙O的半径r;(6分)
(2)如图5-2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数. (2分)

(1) 过点O作AC的垂线交AC于E、交劣弧于F,由题意可知,OE=EF,1分
∵ OE⊥AC,∴AE=,3分
在Rt△AOE中,,4分
∴,∴r=.6分
(2)∠DCA=40°.8分
(1) ①易求反比例函数的解析式为,1分
直线AB的解析式为y = -x 5;3分
② 依题意可设向下平移m(m>0)个单位后解析式为,4分
由,得,5分
∵ 平移后直线l与反比例函数有且只有一个交点,∴△=,
∴ ,(舍去).6分
即当时,直线l与反比例函数有且只有一个交点;7分
(2) .9分
(2013?自贡)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为(  )

 
A.
3
B.
4
C.
5
D.
8


考点:
圆周角定理;坐标与图形性质;勾股定理.3718684

专题:
计算题.

分析:
连接BC,由90度的圆周角所对的弦为直径,得到BC为圆A的直径,在直角三角形BOC中,由OB与OC的长,利用勾股定理求出BC的长,即可确定出圆A的半径.

解答:
解:连接BC,
∵∠BOC=90°,
∴BC为圆A的直径,即BC过圆心A,
在Rt△BOC中,OB=8,OC=6,
根据勾股定理得:BC=10,
则圆A的半径为5.
故选C


点评:
此题考查了圆周角定理,坐标与图形性质,以及勾股定理,熟练掌握圆周角定理是解本题的关键.

(2013?自贡)如图,点O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是(  )

 
A.
4
B.
5
C.
6
D.
7


考点:
正多边形和圆.3718684

分析:
根据圆内接正多边形的性质可知,只要把此正六边形再化为正多边形即可,即让周角除以30的倍数就可以解决问题.

解答:
解:360÷30=12;
360÷60=6;
360÷90=4;
360÷120=3;
360÷180=2.
因此n的所有可能的值共五种情况,
故选B.

点评:
本题考查了正多边形和圆,只需让周角除以30°的倍数即可.

(2013?自贡)如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是  .

考点:
圆周角定理;勾股定理;锐角三角函数的定义.3718684

专题:
网格型.

分析:
根据同弧所对的圆周角相等得到∠ABC=∠AED,在直角三角形ABC中,利用锐角三角函数定义求出cos∠ABC的值,即为cos∠AED的值.

解答:
解:∵∠AED与∠ABC都对,
∴∠AED=∠ABC,
在Rt△ABC中,AB=2,AC=1,
根据勾股定理得:BC=,
则cos∠AED=cos∠ABC==.
故答案为:

点评:
此题考查了圆周角定理,锐角三角函数定义,以及勾股定理,熟练掌握圆周角定理是解本题的关键.

(2013?自贡)如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=cm.
(1)求证:AC是⊙O的切线;
(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)

考点:
切线的判定;扇形面积的计算.3718684

分析:
(1)求出∠COB的度数,求出∠A的度数,根据三角形的内角和定理求出∠OCA的度数,根据切线的判定推出即可;
(2)如解答图所示,解题关键是证明△CDM≌△OBM,从而得到S阴影=S扇形BOC.

解答:
如图,连接BC,OD,OC,设OC与BD交于点M.
(1)证明:根据圆周角定理得:∠COB=2∠CDB=2×30°=60°,
∵AC∥BD,
∴∠A=∠OBD=30°,
∴∠OCA=180°﹣30°﹣60°=90°,
即OC⊥AC,
∵OC为半径,
∴AC是⊙O的切线;
(2)解:由(1)知,AC为⊙O的切线,
∴OC⊥AC.
∵AC∥BD,
∴OC⊥BD.
由垂径定理可知,MD=MB=BD=.
在Rt△OBM中,∠COB=60°,OB===6.
在△CDM与△OBM中,

∴△CDM≌△OBM
∴S△CDM=S△OBM
∴阴影部分的面积S阴影=S扇形BOC==6π(cm2).


点评:
本题考查了平行线性质,切线的判定,扇形的面积,三角形的面积,圆周角定理的应用,主要考查学生综合运用定理进行推理和计算的能力.

(2013鞍山)已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为(  )

 A.45°B.35°C.25°D.20°
考点:圆周角定理.
专题:探究型.
分析:直接根据圆周角定理进行解答即可.
解答:解:∵OA⊥OB,
∴∠AOB=90°,
∴∠ACB=∠AOB=45°.
故选A.
点评:本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 
 (2013鞍山)如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.
(1)AC与CD相等吗?问什么?
(2)若AC=2,AO=,求OD的长度.

考点:切线的性质;勾股定理.
专题:计算题.
分析:(1)AC=CD,理由为:由AC为圆的切线,利用切线的性质得到∠OAC为直角,再由OC与OB垂直,得到∠BOC为直角,由OA=OB,利用等边对等角得到一对角相等,再利用对顶角相等及等角的余角相等得到一对角相等,利用等角对等边即可得证;
(2)由ODC=OD DC,DC=AC,表示出OC,在直角三角形OAC中,利用勾股定理即可求出OD的长.
解答:解:(1)AC=CD,理由为:∵OA=OB,
∴∠OAB=∠B,
∵直线AC为圆O的切线,
∴∠OAC=∠OAB ∠DAC=90°,
∵OB⊥OC,
∴∠BOC=90°,
∴∠ODB ∠B=90°,
∵∠ODB=∠CDA,
∴∠CDA ∠B=90°,
∴∠DAC=∠CDA,
则AC=CD;
(2)在Rt△OAC中,AC=CD=2,AO=,OC=OD DC=OD 2,
根据勾股定理得:OC2=AC2 AO2,即(OD 2)2=22 ()2,
解得:OD=1.
点评:此题考查了切线的性质,勾股定理,等腰三角形的性质,熟练掌握切线的性质是解本题的关键.
(2013?大连)用一个圆心角为90°,半径为32cm的扇形作为一个圆锥的侧面(接缝处不重叠),则这个圆锥的底面圆的半径为 cm。
(2013?大连)如图,AB是⊙O的直径,CD与⊙O相切于点C,DA⊥AB,DO及DO的延长线与⊙O分别相交于点E、F,
EB与CF相交于点G。 (1)求证:DA=DC; (2)⊙O的半径为3,DC=4,求CG的长。

(2013?沈阳)如图,点A、B、C、D都在⊙O上,=90°,AD=3,CD=2,则⊙O 的直径的长是_________.


(2013?沈阳)如图,OC平分,点A在射线OC上,以点A为圆心,半径为2的⊙A与OM相切于点B,连接BA并延长交⊙A于点D,交ON于点E。
(1)求证:ON是⊙A的切线;
(2)若=60°,求图中阴影部分的面积。(结果保留π)

(2013?铁岭)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.
(1)判断AF与⊙O的位置关系并说明理由;
(2)若⊙O的半径为4,AF=3,求AC的长.

考点:
切线的判定与性质.3718684

分析:
(1)AF为为圆O的切线,理由为:练级OC,由PC为圆O的切线,利用切线的性质得到CP垂直于OC,由OF与BC平行,利用两直线平行内错角相等,同位角相等,分别得到两对角相等,根据OB=OC,利用等边对等角得到一对角相等,等量代换得到一对角相等,再由OC=OA,OF为公共边,利用SAS得出三角形AOF与三角形COF全等,由全等三角形的对应角相等及垂直定义得到AF垂直于OA,即可得证;
(2)由AF垂直于OA,在直角三角形AOF中,由OA与AF的长,利用勾股定理求出OF的长,而OA=OC,OF为角平分线,利用三线合一得到E为AC中点,OE垂直于AC,利用面积法求出AE的长,即可确定出AC的长.

解答:
解:(1)AF为圆O的切线,理由为:
连接OC,
∵PC为圆O切线,
∴CP⊥OC,
∴∠OCP=90°,
∵OF∥BC,
∴∠AOF=∠B,∠COF=∠OCB,
∵OC=OB,
∴∠OCB=∠B,
∴∠AOF=∠COF,
∵在△AOF和△COF中,
,
∴△AOF≌△COF(SAS),
∴∠OAF=∠OCF=90°,
则AF为圆O的切线;
(2)∵△AOF≌△COF,
∴∠AOF=∠COF,
∵OA=OC,
∴E为AC中点,即AE=CE=AC,OE⊥AC,
∵OA⊥AF,
∴在Rt△AOF中,OA=4,AF=3,
根据勾股定理得:OF=5,
∵S△AOF=?OA?AF=?OF?AE,
∴AE=,
则AC=2AE=.


点评:
此题考查了切线的判定与性质,涉及的知识有:全等三角形的判定与性质,平行线的性质,等腰三角形的性质,三角形的面积求法,熟练掌握切线的判定与性质是解本题的关键.

(2013?鄂州)已知:如图,AB为⊙O的直径,AB⊥AC,BC交⊙O于D,E是AC的中点,ED与AB的延长线相交于点F.
(1)求证:DE为⊙O的切线.
(2)求证:AB:AC=BF:DF.

考点:
切线的判定;相似三角形的判定与性质.3718684

专题:
证明题.

分析:
(1)连接OD、AD,求出CDA=∠BDA=90°,求出∠1=∠4,∠2=∠3,推出∠4 ∠3=∠1 ∠2=90°,根据切线的判定推出即可;
(2)证△ABD∽△CAD,推出=,证△FAD∽△FDB,推出=,即可得出AB:AC=BF:DF.

解答:
证明:(1)连结DO、DA,
∵AB为⊙O直径,
∴∠CDA=∠BDA=90°,
∵CE=EA,
∴DE=EA,
∴∠1=∠4,
∵OD=OA,
∴∠2=∠3,
∵∠4 ∠3=90°,
∴∠1 ∠2=90°,
即:∠EDO=90°,
∵OD是半径,
∴DE为⊙O的切线;
(2)∵∠3 ∠DBA=90°,∠3 ∠4=90°,
∴∠4=∠DBA,
∵∠CDA=∠BDA=90°,
∴△ABD∽△CAD,
∴=,
∵∠FDB ∠BDO=90°,∠DBO ∠3=90°,
又∵OD=OB,
∴∠BDO=∠DBO,
∴∠3=∠FDB,
∵∠F=∠F,
∴△FAD∽△FDB,
∴=,
∴=,
即AB:AC=BF:DF.


点评:
本题考查了切线的判定,圆周角定理,相似三角形的性质和判定的应用,主要考查学生的推理能力,题目比较典型,是一道比较好的题目.

(2013?恩施州)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为(  )

 
A.

B.

C.
π 1
D.



考点:
扇形面积的计算;正方形的性质;旋转的性质.

分析:
画出示意图,结合图形及扇形的面积公式即可计算出点A运动的路径线与x轴围成的面积.

解答:

解:如图所示:
点A运动的路径线与x轴围成的面积=S1 S2 S3 2a=   2×(×1×1)=π 1.
故选C.

点评:
本题考查了扇形的面积计算,解答本题如果不能直观想象出图形,可以画出图形再求解,注意熟练掌握扇形的面积计算公式.

 (2013?恩施州)如图所示,一半径为1的圆内切于一个圆心角为60°的扇形,则扇形的周长为 6 π .

考点:
相切两圆的性质;含30度角的直角三角形;切线的性质;弧长的计算.

分析:
首先求出扇形半径,进而利用扇形弧长公式求出扇形弧长,进而得出扇形周长.

解答:
解:如图所示:设⊙O与扇形相切于点A,B,
则∠CAO=90°,∠AOB=30°,
∵一半径为1的圆内切于一个圆心角为60°的扇形,
∴AO=1,
∴CO=2AO=2,
∴BC=2=1=3,
∴扇形的弧长为:=π,
∴则扇形的周长为:3 3 π=6 π.
故答案为:6 π.


点评:
此题主要考查了相切两圆的性质以及扇形弧长公式等知识,根据已知得出扇形半径是解题关键.

(2013?恩施州)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.
(1)求证:CG是⊙O的切线.
(2)求证:AF=CF.
(3)若∠EAB=30°,CF=2,求GA的长.

考点:
切线的判定;等腰三角形的判定与性质;垂径定理;圆周角定理;相似三角形的判定与性质.3718684

专题:
证明题.

分析:
(1)连结OC,由C是劣弧AE的中点,根据垂径定理得OC⊥AE,而CG∥AE,所以CG⊥OC,然后根据切线的判定定理即可得到结论;
(2)连结AC、BC,根据圆周角定理得∠ACB=90°,∠B=∠1,而CD⊥AB,则∠CDB=90°,根据等角的余角相等得到∠B=∠2,所以∠1=∠2,于是得到AF=CF;
(3)在Rt△ADF中,由于∠DAF=30°,FA=FC=2,根据含30度的直角三角形三边的关系得到DF=1,AD=,再由AF∥CG,根据平行线分线段成比例得到DA:AG=DF:CF
然后把DF=1,AD=,CF=2代入计算即可.

解答:
(1)证明:连结OC,如图,
∵C是劣弧AE的中点,
∴OC⊥AE,
∵CG∥AE,
∴CG⊥OC,
∴CG是⊙O的切线;
(2)证明:连结AC、BC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠2 ∠BCD=90°,
而CD⊥AB,
∴∠B ∠BCD=90°,
∴∠B=∠2,
∵AC弧=CE弧,
∴∠1=∠B,
∴∠1=∠2,
∴AF=CF;
(3)解:在Rt△ADF中,∠DAF=30°,FA=FC=2,
∴DF=AF=1,
∴AD=DF=,
∵AF∥CG,
∴DA:AG=DF:CF,即:AG=1:2,
∴AG=2.


点评:
本题考查了圆的切线的判定:过半径的外端点与半径垂直的直线为圆的切线.也考查了圆周角定理、垂径定理和等腰三角形的判定.

(2013?黄冈)如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则CED所在圆的半径为 .

(2013?黄冈)如图,AB为⊙O的直径,C为⊙O上一点,AD的过C点的直线互相垂直,垂足为D,且AC平分∠DAB.
(1)求证:DC为⊙O的切线;
(2)若⊙O的半径为3,AD=4,求AC的长.


.(2013?黄石)已知直角三角形的一条直角边,另一条直角边,则以为轴旋转一周,所得到的圆锥的表面积是
A. B.  C.  D. 
答案:A
解析:得到的是底面半径为5cm,母线长为13cm的圆锥,
底面积为:25,侧面积为:,所以,表面积为
(2013?黄石)如右图,在中,,,,以点为圆心,为半径的圆与交于点,则的长为
A.  B.  C.  D. 
答案:C
解析:由勾股定理得AB=5,则sinA=,作CE⊥AD于E,则AE=DE,在Rt△AEC中,sinA=,即,所以,CE=,AE=,所以,AD=
(2013?黄石)如右图,在边长为3的正方形中,圆与圆外切,且圆分别与、边相切,圆分别与、边相切,则圆心距为 .
答案:
解析:过O1,O2分别作O1M⊥CD, O2N⊥BC,垂足为M,N
设圆O1半径为R,圆O2半径为r,
则DO1=R,BO2=r,
又BD=3,所以R+r r R=3
解得R+r=6-3,即=6-3
(本小题满分7分)(2013?黄石)如图,是圆的直径,和是圆的两条切线,是圆上一点,是上一点,连接并延长交于,且,.
(1)求证:是圆的切线;
(2)求证:.
解析:
(1)证明:连接,是⊙的切线,是⊙的半径
∴°
∵∥
∴,
∵ ∴
在△和△中

∴
∴°
∴与⊙相切(3分)
(2)∵和是⊙的两切线
∴,
∴∥
∵是的中点,∥
∴∥且
∵切⊙于点
∴,
∴
(2013?荆门)若圆锥的侧面展开图为半圆,则该圆锥的母线l与底面半径r的关系是(  )
 
A.
l=2r
B.
l=3r
C.
l=r
D.



考点:
圆锥的计算.3718684

分析:
根据圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面圆的周长,扇形的半径为圆锥的母线长有2π?r=π?l,即可得到r与l的比值.

解答:
解:∵圆锥的侧面展开图是半圆,
∴2π?r=π?l,
∴r:l=1:2.
则l=2r.
故选A..

点评:
本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面圆的周长,扇形的半径为圆锥的母线长.

(2013?荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为(  )

 
A.

B.

C.

D.



考点:
圆周角定理;勾股定理;锐角三角函数的定义.3718684

分析:
首先过点A作AD⊥OB于点D,由在Rt△AOD中,∠AOB=45°,可求得AD与OD的长,继而可得BD的长,然后由勾股定理求得AB的长,继而可求得sinC的值.

解答:
解:过点A作AD⊥OB于点D,
∵在Rt△AOD中,∠AOB=45°,
∴OD=AD=OA?cos45°=×1=,
∴BD=OB﹣OD=1﹣,
∴AB==,
∵AC是⊙O的直径,
∴∠ABC=90°,AC=2,
∴sinC=.
故选B.


点评:
此题考查了圆周角定理、三角函数以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.


(2013?荆门)如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.
(1)求证:OF∥BE;
(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;
(3)延长DC、FP交于点G,连接OE并延长交直线DC与H(图2),问是否存在点P,使△EFO∽△EHG(E、F、O与E、H、G为对应点)?如果存在,试求(2)中x和y的值;如果不存在,请说明理由.

考点:
圆的综合题.3718684

分析:
(1)首先证明Rt△FAO≌Rt△FEO进而得出∠AOF=∠ABE,即可得出答案;
(2)过F作FQ⊥BC于Q,利用勾股定理求出y与x之间的函数关系,根据M是BC中点以及BC=2,即可得出BP的取值范围;
(3)首先得出当∠EFO=∠EHG=2∠EOF时,即∠EOF=30°时,Rt△EFO∽Rt△EHG,求出y=AF=OA?tan30°=,即可得出答案.

解答:
(1)证明:连接OE
FE、FA是⊙O的两条切线
∴∠FAO=∠FEO=90°
在Rt△OAF和Rt△OEF中,

∴Rt△FAO≌Rt△FEO(HL),
∴∠AOF=∠EOF=∠AOE,
∴∠AOF=∠ABE,
∴OF∥BE,
(2)解:过F作FQ⊥BC于Q
∴PQ=BP﹣BQ=x﹣y
PF=EF EP=FA BP=x y
∵在Rt△PFQ中
∴FQ2 QP2=PF2
∴22 (x﹣y)2=(x y)2
化简得:,(1<x<2);
(3)存在这样的P点,
理由:∵∠EOF=∠AOF,
∴∠EHG=∠EOA=2∠EOF,
当∠EFO=∠EHG=2∠EOF时,
即∠EOF=30°时,Rt△EFO∽Rt△EHG,
此时Rt△AFO中,
y=AF=OA?tan30°=,
∴
∴当时,△EFO∽△EHG.


点评:
此题主要考查了圆的综合应用以及全等三角形的判定和性质以及相似三角形的判定与性质等知识,得出FQ2 QP2=PF2是解题关键.


(2013?荆州)如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB'C',点B经过的路径为弧BB',若角∠BAC=60°,AC=1,则图中阴影部分的面积是A
A.B. C. D. 

(2013?荆州)如图,AB为⊙O的直径,弦CD与AB相交于E,DE=EC,过点B的切线与AD的延长线交于F,过E作EG⊥BC于G,延长GE交AD于H.
(1)求证:AH=HD;(2)若cos∠C =,DF=9,求⊙O的半径.

(2013?潜江)如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为
A.B.C.D.
(2013?潜江)如图,以AB为直径的半圆O 交AC于点D,且点D为AC的中点,DE⊥BC于点E,AE交半圆O于点F,BF的延长线交DE于点G.
(1)求证:DE为半圆O的切线;
(2)若,,求EF的长.


(2013?十堰)如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当≤r<2时,S的取值范围是 ﹣1≤S<﹣ .

考点:
扇形面积的计算;等边三角形的性质.3718684

分析:
首先求出S关于r的函数表达式,分析其增减性;然后根据r的取值,求出S的最大值与最小值,从而得到S的取值范围.

解答:
解:如右图所示,过点D作DG⊥BC于点G,易知G为BC的中点,CG=1.
在Rt△CDG中,由勾股定理得:DG==.
设∠DCG=θ,则由题意可得:
S=2(S扇形CDE﹣S△CDG)=2(﹣×1×)=﹣,
∴S=﹣.
当r增大时,∠DCG=θ随之增大,故S随r的增大而增大.
当r=时,DG==1,∵CG=1,故θ=45°,
∴S=﹣=﹣1;
若r=2,则DG==,∵CG=1,故θ=60°,
∴S=﹣=﹣.
∴S的取值范围是:﹣1≤S<﹣.
故答案为:﹣1≤S<﹣.


点评:
本题考查扇形面积的计算、等边三角形的性质、勾股定理等重要知识点.解题关键是求出S的函数表达式,并分析其增减性.

 
(2013?十堰)如图1,△ABC中,CA=CB,点O在高CH上,OD⊥CA于点D,OE⊥CB于点E,以O为圆心,OD为半径作⊙O.
(1)求证:⊙O与CB相切于点E;
(2)如图2,若⊙O过点H,且AC=5,AB=6,连接EH,求△BHE的面积和tan∠BHE的值.

考点:
切线的判定与性质;勾股定理;相似三角形的判定与性质.3718684

专题:
计算题.

分析:
(1)由CA=CB,且CH垂直于AB,利用三线合一得到CH为角平分线,再由OD垂直于AC,OE垂直于CB,利用角平分线定理得到OE=OD,利用切线的判定方法即可得证;
(2)由CA=CB,CH为高,利用三线合一得到AH=BH,在直角三角形ACH中,利用勾股定理求出CH的长,由圆O过H,CH垂直于AB,得到圆O与AB相切,由(1)得到圆O与CB相切,利用切线长定理得到BE=BH,如图所示,过E作EF垂直于AB,得到EF与CH平行,得出△BEF与△BCH相似,由相似得比例,求出EF的长,由BH与EF的长,利用三角形面积公式即可求出△BEH的面积;根据EF与BE的长,利用勾股定理求出FB的长,由BH﹣BF求出HF的长,利用锐角三角形函数定义即可求出tan∠BHE的值.

解答:
(1)证明:∵CA=CB,点O在高CH上,
∴∠ACH=∠BCH,
∵OD⊥CA,OE⊥CB,
∴OE=OD,
∴圆O与CB相切于点E;
(2)解:∵CA=CB,CH是高,
∴AH=BH=AB=3,
∴CH==4,
∵点O在高CH上,圆O过点H,
∴圆O与AB相切于H点,
由(1)得圆O与CB相切于点E,
∴BE=BH=3,
如图,过E作EF⊥AB,则EF∥CH,
∴△BEF∽△BCH,
∴=,即=,
解得:EF=,
∴S△BHE=BH?EF=×3×=,
在Rt△BEF中,BF==,
∴HF=BH﹣BF=3﹣=,
则tan∠BHE==2.


点评:
此题考查了切线的判定与性质,相似三角形的判定与性质,勾股定理,熟练掌握切线的判定与性质是解本题的关键.

 
(2013?武汉)如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点,
若∠CED=°,∠ECD=°,⊙B的半径为R,则的长度是( )
A. B.
C. D.
答案:B
解析:由切线长定理,知:PE=PD=PC,设∠PEC=z°
所以,∠PED=∠PDE=(x+z)°,∠PCE=∠PEC=z°,
∠PDC=∠PCD=(y+z)°,
∠DPE=(180-2x-2z)°,∠DPC=(180-2y-2z)°,
在△PEC中,2z°+(180-2x-2z)°+(180-2y-2z)°=180°,
化简,得:z=(90-x-y)°,在四边形PEBD中,∠EBD=(180°-∠DPE)=180°-(180-2x-2z)°=(2x+2z)°=(2x+180-2x-2y)=(180-2y)°,
所以,弧DE的长为:=
选B。
(2013?武汉)如图,在平面直角坐标系中,△ABC是⊙O的内接三角形,AB=AC,点P是的中点,连接PA,PB,PC.
(1)如图①,若∠BPC=60°,求证:;
(2)如图②,若,求的值.

解析:
(1)证明:∵弧BC=弧BC,∴∠BAC=∠BPC=60°.
又∵AB=AC,∴△ABC为等边三角形
∴∠ACB=60°,∵点P是弧AB的中点,∴∠ACP=30°,
又∠APC=∠ABC=60°,∴AC=AP.
(2)解:连接AO并延长交PC于F,过点E作EG⊥AC于G,连接OC.教网]
∵AB=AC,∴AF⊥BC,BF=CF.
∵点P是弧AB中点,∴∠ACP=∠PCB,∴EG=EF.
∵∠BPC=∠FOC,
∴sin∠FOC=sin∠BPC=.
设FC=24a,则OC=OA=25a,
∴OF=7a,AF=32a.
在Rt△AFC中,AC2=AF2 FC2,∴AC=40a.
在Rt△AGE和Rt△AFC中,sin∠FAC=,
∴,∴EG=12a.
∴tan∠PAB=tan∠PCB=.
(2013?襄阳)如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E、B,E是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为(  )

 
A.

B.

C.

D.



考点:
扇形面积的计算;弧长的计算.3801346

分析:
首先根据圆周角定理得出扇形半径以及圆周角度数,进而利用锐角三角函数关系得出BC,AC的长,利用S△ABC﹣S扇形BOE=图中阴影部分的面积求出即可.

解答:
解:连接BD,BE,BO,EO,
∵B,E是半圆弧的三等分点,
∴∠EOA=∠EOB=∠BOD=60°,
∴∠BAC=30°,
∵弧BE的长为π,
∴=π,
解得:R=2,
∴AB=ADcos30°=2,
∴BC=AB=,
∴AC==3,
∴S△ABC=×BC×AC=××3=,
∵△BOE和△ABE同底等高,
∴△BOE和△ABE面积相等,
∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=﹣=﹣.
故选:D.


点评:
此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出∴△BOE和△ABE面积相等是解题关键.

(2013?襄阳)如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为 0.2  m.

考点:
垂径定理的应用;勾股定理.3801346

分析:
过O作OC垂直于AB,利用垂径定理得到C为AB的中点,在直角三角形AOC中,由水面高度与半径求出OC的长,即可得出排水管内水的深度.

解答:
解:过O作OC⊥AB,交AB于点C,可得出AC=BC=AB=0.4m,
由直径是1m,半径为0.5m,
在Rt△AOC中,根据勾股定理得:OC===0.3(m),
则排水管内水的深度为:0.5﹣0.3=0.2(m).
故答案为:0.2.


点评:
此题考查了垂径定理的应用,以及勾股定理,熟练掌握定理是解本题的关键.

(2013?襄阳)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.
(1)求证:DP∥AB;
(2)若AC=6,BC=8,求线段PD的长.

考点:
切线的性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.3801346

专题:
证明题.

分析:
(1)连结OD,由AB为⊙O的直径,根据圆周角定理得AB为⊙O的直径得∠ACB=90°,再由ACD=∠BCD=45°,则∠DAB=∠ABD=45°,所以△DAB为等腰直角三角形,所以DO⊥AB,根据切线的性质得OD⊥PD,于是可得到DP∥AB;
(2)先根据勾股定理计算出AB=10,由于△DAB为等腰直角三角形,可得到AD==5;由△ACE为等腰直角三角形,得到AE=CE==3,在Rt△AED中利用勾股定理计算出DE=4,则CD=7,易证得∴△PDA∽△PCD,得到===,所以PA=PD,PC=PD,然后利用PC=PA AC可计算出PD.

解答:
(1)证明:连结OD,如图,
∵AB为⊙O的直径,
∴∠ACB=90°,
∵∠ACB的平分线交⊙O于点D,
∴∠ACD=∠BCD=45°,
∴∠DAB=∠ABD=45°,
∴△DAB为等腰直角三角形,
∴DO⊥AB,
∵PD为⊙O的切线,
∴OD⊥PD,
∴DP∥AB;
(2)解:在Rt△ACB中,AB==10,
∵△DAB为等腰直角三角形,
∴AD==5,
∵AE⊥CD,
∴△ACE为等腰直角三角形,
∴AE=CE===3,
在Rt△AED中,DE===4,
∴CD=CE DE=3 4=7,
∵AB∥PD,
∴∠PDA=∠DAB=45°,
∴∠PAD=∠PCD,
而∠DPA=∠CPD,
∴△PDA∽△PCD,
∴===,
∴PA=PD,PC=PD,
而PC=PA AC,
∴PD 6=PD,
∴PD=.


点评:
本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理定理、等腰直角三角形的性质和三角形相似的判定与性质.

2013?孝感)下列说法正确的是(  )
 
A.
平分弦的直径垂直于弦

 
B.
半圆(或直径)所对的圆周角是直角

 
C.
相等的圆心角所对的弧相等

 
D.
若两个圆有公共点,则这两个圆相交


考点:
圆与圆的位置关系;垂径定理;圆心角、弧、弦的关系;圆周角定理.

分析:
利用圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识进行判断即可

解答:
解:A、平分弦(不是直径)的直径垂直于弦,故本选项错误;
B、半圆或直径所对的圆周角是直角,故本选项正确;
C、同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;
D、两圆有两个公共点,两圆相交,故本选项错误,
故选B.

点评:
本题考查了圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识,牢记这些定理是解决本题的关键.

 
(2013?孝感)用半径为10cm,圆心角为216°的扇形做成一个圆锥的侧面,则这个圆锥的高为 8 cm.
考点:
圆锥的计算.

专题:
计算题.

分析:
根据圆的周长公式和扇形的弧长公式解答.

解答:
解:如图:圆的周长即为扇形的弧长,
列出关系式解答:=2πx,
又∵n=216,r=10,
∴(216×π×10)÷180=2πx,
解得x=6,
h==8.
故答案为:8cm.


点评:
考查了圆锥的计算,先画出图形,建立起圆锥底边周长和扇形弧长的关系式,即可解答.

(2013?孝感)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.
(1)求证:PA是⊙O的切线;
(2)若PD=,求⊙O的直径.

考点:
切线的判定.

分析:
(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,继而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,从而得出结论;
(2)利用含30°的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直径.

解答:
(1)证明:连接OA,
∵∠B=60°,
∴∠AOC=2∠B=120°,
又∵OA=OC,
∴∠OAC=∠OCA=30°,
又∵AP=AC,
∴∠P=∠ACP=30°,
∴∠OAP=∠AOC﹣∠P=90°,
∴OA⊥PA,
∴PA是⊙O的切线.
(2)在Rt△OAP中,∵∠P=30°,
∴PO=2OA=OD PD,
又∵OA=OD,
∴PD=OA,
∵,
∴.
∴⊙O的直径为.


点评:
本题考查了切线的判定及圆周角定理,解答本题的关键是掌握切线的判定定理、圆周角定理及含30°直角三角形的性质.

(2013?宜昌)如图,DC是⊙O的直径,弦AB⊥CD于F,连接BC,DB.则下列结论错误的是( )
A.弧AD=弧BD B.AF=BF C.OF=CF D. ∠DBC=90°

(2013?宜昌)半径为2cm的⊙O与边长为2cm的正方形ABCD在水平直线L的同侧,⊙O与L相切于点F,DC在L上.
(1)过点B作⊙O的一条切线BE,E为切点.
①填空:如图1,当点A在⊙O上时,∠EBA的度数是 ;
②如图2,当E,A,D三点在同一直线上时,求线段OA的长;
(2)以正方形ABCD的边AD与OF重合的位置为初始位置,向左移动正方形(图3),至边BC与OF重合时结束移动,M,N分别是边BC,AD与⊙O的公共点,求扇形MON的面积的范围.





(2013?张家界)如图,⊙A、⊙B、⊙C两两外切,它们的半径都是a,顺次连接三个圆心得到△ABC,则图中阴影部分的面积之和是  .

(2013?张家界)如图,⊙O的直径AB⊥弦CD,且∠BAC=40°,则∠BOD=  .

(2013?晋江)如图5,在中,,,.若动点在线段上(不与点、重合),过点作交边于点.
(1)当点运动到线段中点时,  ;
(2)点关于点的对称点为点,以为半径作⊙,
当 或. 时,⊙与直线相切.
(2013?晋江)如图10,在平面直角坐标系中,一动直线从轴出发,以每秒1个单位长度的速度沿轴向右平移,直线与直线相交于点,以为半径的⊙与轴正半轴交于点,与轴正半轴交于点.设直线的运动时间为秒.
(1)填空:当时,⊙的半径为 , , ;
(2)若点是坐标平面内一点,且以点、、、为顶点的四边形为平行四边形.
①请你直接写出所有符合条件的点的坐标;(用含的代数式表示)
②当点在直线上方时,过、、三点的⊙与轴的另一个交点为
点,连接、,试判断的形状,并说明理由.


解:(1),,;
(2)符合条件的点有3个,如图10-1,分别为、
、;
(3) 是等腰直角三角形.理由如下:
当点在第一象限时,如图10-2,连接、、、.
由(2)可知,点的坐标为,由点坐标为,点坐
标为,点坐标为,可知,
是等腰直角三角形,又,进而可得也是等腰
直角三角形,则.
,
为⊙的直径,
、、三点共线,
又,
,
,
为⊙的直径,


过点作轴于点,则有,

∽
即
解得或
依题意,点与点不重合,
舍去,只取
即相似比为1,此时两个三角形全等,
则
是等腰直角三角形.
当点在第二象限时,如图10-3,同上可证也是等腰直角三角形.
综上所述, 当点在直线上方时, 必等腰直角三角形.
(2013?龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,
则弦AB的长为 C
A. B.2 C. D.4
.(2013?龙岩)如图,PA是⊙O的切线,A为切点,B是⊙O上一点,
BC⊥AP于点C,且OB=BP=6,则BC=_______3______.

(2013?莆田)如图,△ABC内接于⊙O,∠A=50°,则∠OBC的度数为(  )

 
A.
40°
B.
50°
C.
80°
D.
100°


考点:
圆周角定理.

分析:
连接OC,利用圆周角定理即可求得∠BOC的度数,然后利用等腰三角形的性质即可求得.

解答:
解:连接OC.
则∠BOC=2∠A=100°,
∵OB=OC,
∴∠OBC=∠OCB==40°.
故选A.


点评:
本题考查了圆周角定理以及等腰三角形的性质定理,正确理解定理是关键.

(2013?莆田)如图,?ABCD中,AB=2,以点A为圆心,AB为半径的圆交边BC于点E,连接DE、AC、AE.
(1)求证:△AED≌△DCA;
(2)若DE平分∠ADC且与⊙A相切于点E,求图中阴影部分(扇形)的面积.

考点:
切线的性质;全等三角形的判定与性质;平行四边形的性质;扇形面积的计算.

分析:
(1)由四边形ABCD是平行四边形,AB=AE,易证得四边形AECD是等腰梯形,即可得AC=DE,然后由SSS,即可证得:△AED≌△DCA;
(2)由DE平分∠ADC且与⊙A相切于点E,可求得∠EAD的度数,继而求得∠BAE的度数,然后由扇形的面积公式求得阴影部分(扇形)的面积.

解答:
(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,AD∥BC,
∴四边形AECD是梯形,
∵AB=AE,
∴AE=CD,
∴四边形AECD是等腰梯形,
∴AC=DE,
在△AED和△DCA中,
,
∴△AED≌△DCA(SSS);
(2)解:∵DE平分∠ADC,
∴∠ADC=2∠ADE,
∵四边形AECD是等腰梯形,
∴∠DAE=∠ADC=2∠AED,
∵DE与⊙A相切于点E,
∴AE⊥DE,
即∠AED=90°,
∴∠ADE=30°,
∴∠DAE=60°,
∴∠DCE=∠AEC=180°﹣∠DAE=120°,
∵四边形ACD是平行四边形,
∴∠BAD=∠DCE=120°,
∴∠BAE=∠BAD﹣∠EAD=60°,
∴S阴影=×π×22=π.

点评:
此题考查了切线的性质、全等三角形的判定与性质、等腰梯形的判定与性质以及平行四边形的性质.此题难度适中,注意掌握数形结合思想的应用.

 
(2013?三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为(  )

 
A.
30°
B.
45°
C.
50°
D.
60°


考点:
圆周角定理.

分析:
根据同弧所对圆心角是圆周角2倍可求,∠ABC=∠AOC=50°.

解答:
解:∵∠AOC=100°,
∴∠ABC=∠AOC=50°.
故选C.

点评:
此题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

(2013?三明)如图①,AB是半圆O的直径,以OA为直径作半圆C,P是半圆C上的一个动点(P与点A,O不重合),AP的延长线交半圆O于点D,其中OA=4.
(1)判断线段AP与PD的大小关系,并说明理由;
(2)连接OD,当OD与半圆C相切时,求的长;
(3)过点D作DE⊥AB,垂足为E(如图②),设AP=x,OE=y,求y与x之间的函数关系式,并写出x的取值范围.
考点:
圆的综合题.

分析:
(1)AP=PD.理由如下:如图①,连接OP.利用圆周角定理知OP⊥AD.然后由等腰三角形“三合一”的性质证得AP=PD;
(2)由三角形中位线的定义证得CP是△AOD的中位线,则PC∥DO,所以根据平行线的性质、切线的性质易求弧AP所对的圆心角∠ACP=90°;
(3)分类讨论:点E落在线段OA和线段OB上,这两种情况下的y与x的关系式.这两种情况都是根据相似三角形(△APO∽△AED)的对应边成比例来求y与x之间的函数关系式的.

解答:
解:(1)AP=PD.理由如下:
如图①,连接OP.
∵OA是半圆C的直径,
∴∠APO=90°,即OP⊥AD.
又∵OA=OD,
∴AP=PD;
(2)如图①,连接PC、OD.
∵OD是半圆C的切线,
∴∠AOD=90°.
由(1)知,AP=PD.
又∵AC=OC,
∴PC∥OD,
∴∠ACP=∠AOD=90°,
∴的长==π;
(3)分两种情况:
①当点E落在OA上(即0<x≤2时),如图②,连接OP,则∠APO=∠AED.
又∵∠A=∠A,
∴△APO∽△AED,
∴=.
∵AP=x,AO=4,AD=2x,AE=4﹣y,
∴=,
∴y=﹣x2 4(0<x≤2);
②当点E落在线段OB上(即2<x<4)时,如图③,连接OP.
同①可得,△APO∽△AED,
∴=.
∵AP=x,AO=4,AD=2x,AE=4 y,
∴=,
∴y=x2 4(2<x<4).


点评:
本题综合考查了圆周角定理、圆的切线的性质以及相似三角形的判定与性质.解答(3)题时,要分类讨论,以防漏解.解答几何问题时,要数形结合,使抽象的问题变得形象化,降低题的难度与梯度.

 (2013?漳州)如图,⊙O是△ABC的外接圆,连接OB、OC,若OB=BC,则∠BAC等于
A.60° B.45° C.30° D.20°


(2013?厦门)如图2,在⊙O中,=,∠A=30°,则∠B= B
A.150°. B.75°. 
C.60°. D.15°.
(2013?厦门)如图8,已知A,B,C,D 是⊙O上的四点,
延长DC,AB相交于点E.若BC=BE.
求证:△ADE是等腰三角形.
证明: ∵BC=BE,
∴∠E=∠BCE.
∵ 四边形ABCD是圆内接四边形,
∴∠A+∠DCB=180°.
∵∠BCE+∠DCB=180°,
∴∠A=∠BCE.
∴∠A=∠E.
∴ AD=DE.
∴△ADE是等腰三角形
(2013?厦门)如图12,已知四边形OABC是菱形,
∠O=60°,点M是OA的中点.以点O为圆心,
r为半径作⊙O分别交OA,OC于点D,E,
连接BM.若BM=, 的长是.
求证:直线BC与⊙O相切.
证明一:∵的长是,∴·60=.∴ r=.
作BN⊥OA,垂足为N.
 ∵四边形OABC是菱形,
∴AB∥CO.
∵∠O=60°,
∴∠BAN=60°,∴∠ABN=30°.
设NA=x,则AB=2x,∴ BN=x.
∵M是OA的中点,且AB=OA,
∴ AM=x.
在Rt△BNM中,
(x)2+(2x)2=()2,
∴ x=1,∴BN=.
∵ BC∥AO,
∴ 点O到直线BC的距离d=.
 ∴ d=r.
∴ 直线BC与⊙O相切.

证明二:∵的长是,∴·60=. ∴ r=.
延长BC,作ON⊥BC,垂足为N.
∵ 四边形OABC是菱形
∴ BC∥AO,
∴ ON⊥OA.
∵∠AOC=60°,
∴∠NOC=30°.
设NC=x,则OC=2x, ∴ON=x
连接CM, ∵点M是OA的中点,OA=OC,
∴ OM=x.
∴四边形MONC是平行四边形.
∵ ON⊥BC,
∴四边形MONC是矩形.
∴CM⊥BC. ∴ CM=ON=x.
在Rt△BCM中,
(x)2+(2x)2=()2,
解得x=1.
∴ON=CM=.
∴ 直线BC与⊙O相切.
(2013?长春)如图,△ABC内接于⊙O,∠ABC=71o,∠CAB=53 °点D在AC弧上,则∠ADB的大小为 C
(A)46°. (B)53°. (C)56°. (D)71°.

2013?长春)如图,MN是⊙O的弦,正方形OABC的顶点B、C在MN上,且点B是CM的中点.若正方形OABC的边长为7,则MN的长为 28 .

(2013?吉林省)如图,AB是⊙O的弦,OC⊥AB于点C,连接OA、OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是 cm(写出一个符合条件的数值即可)

(2013?吉林省)如图,在⊿ABC中,AB=BC。以AB为直径作圆⊙O交AC于点D,点E为⊙O上一点,连接ED并延长与BC的延长线交于点F.连接AE、BE,∠BAE=60°,∠F=15°,解答下列问题.
(1)求证:直线FB是⊙O的切线;
(2)若EF=cm,则AC= cm.


(2013?白银)已知⊙O1与⊙O2的半径分别是方程x2﹣4x 3=0的两根,且O1O2=t 2,若这两个圆相切,则t= 2或0 .
考点:
圆与圆的位置关系;解一元二次方程-因式分解法.

分析:
先解方程求出⊙O1、⊙O2的半径,再分两圆外切和两圆内切两种情况列出关于t的方程讨论求解.

解答:
解:∵⊙O1、⊙O2的半径分别是方程x2﹣4x 3=0的两根,
解得⊙O1、⊙O2的半径分别是1和3.
①当两圆外切时,圆心距O1O2=t 2=1 3=4,解得t=2;
②当两圆内切时,圆心距O1O2=t 2=3﹣1=2,解得t=0.
∴t为2或0.
故答案为:2或0.

点评:
考查解一元二次方程﹣因式分解法和圆与圆的位置关系,同时考查综合应用能力及推理能力.注意:两圆相切,应考虑内切或外切两种情况是解本题的难点.

(2013?白银)如图,在⊙O中,半径OC垂直于弦AB,垂足为点E.
(1)若OC=5,AB=8,求tan∠BAC;
(2)若∠DAC=∠BAC,且点D在⊙O的外部,判断直线AD与⊙O的位置关系,并加以证明.

考点:
切线的判定;勾股定理;垂径定理.

专题:
计算题.

分析:
(1)根据垂径定理由半径OC垂直于弦AB,AE=AB=4,再根据勾股定理计算出OE=3,则EC=2,然后在Rt△AEC中根据正切的定义可得到tan∠BAC的值;
(2)根据垂径定理得到AC弧=BC弧,再利用圆周角定理可得到∠AOC=2∠BAC,由于∠DAC=∠BAC,所以∠AOC=∠BAD,利用∠AOC ∠OAE=90°即可得到∠BAD ∠OAE=90°,然后根据切线的判定方法得AD为⊙O的切线.

解答:
解:(1)∵半径OC垂直于弦AB,
∴AE=BE=AB=4,
在Rt△OAE中,OA=5,AE=4,
∴OE==3,
∴EC=OC﹣OE=5﹣3=2,
在Rt△AEC中,AE=4,EC=2,
∴tan∠BAC===;
(2)AD与⊙O相切.理由如下:
∵半径OC垂直于弦AB,
∵AC弧=BC弧,
∴∠AOC=2∠BAC,
∵∠DAC=∠BAC,
∴∠AOC=∠BAD,
∵∠AOC ∠OAE=90°,
∴∠BAD ∠OAE=90°,
∴OA⊥AD,
∴AD为⊙O的切线.

点评:
本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了勾股定理以及垂径定理、圆周角定理.

(2013?宁夏)如图,以等腰直角△ABC两锐角顶点A、B为圆心作等圆,⊙A与⊙B恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为(  )

 
A.

B.

C.

D.



考点:
扇形面积的计算;相切两圆的性质.3718684

分析:
根据题意可判断⊙A与⊙B是等圆,再由直角三角形的两锐角互余,即可得到∠A ∠B=90°,根据扇形的面积公式即可求解.

解答:
解:∵⊙A与⊙B恰好外切,
∴⊙A与⊙B是等圆,
∵AC=2,△ABC是等腰直角三角形,
∴AB=2,
∴两个扇形(即阴影部分)的面积之和= ==πR2=.
故选B.

点评:
本题考查了扇形的面积计算及相切两圆的性质,解答本题的关键是得出两扇形面积之和的表达式,难度一般.

(2013?宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为 2 cm.

考点:
垂径定理;勾股定理.3718684

分析:
通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长.

解答:
解:过点O作OD⊥AB交AB于点D,
∵OA=2OD=2cm,
∴AD===cm,
∵OD⊥AB,
∴AB=2AD=cm.


点评:
本题综合考查垂径定理和勾股定理的运用.

(2013?宁夏)在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O交AC于点E,连结DE并延长,与BC的延长线交于点F.且BD=BF.
(1)求证:AC与⊙O相切.
(2)若BC=6,AB=12,求⊙O的面积.

考点:
切线的判定;相似三角形的判定与性质.3718684

分析:
(1)连接OE,求出∠ODE=∠F=∠DEO,推出OE∥BC,得出OE⊥AC,根据切线的判定推出即可;
(2)证△AEO∽△ACB,得出关于r的方程,求出r即可.

解答:
证明:(1)连接OE,

∵OD=OE,
∴∠ODE=∠OED,
∵BD=BF,
∴∠ODE=∠F,
∴∠OED=∠F,
∴OE∥BF,
∴∠AEO=∠ACB=90°,
∴AC与⊙O相切;
(2)解:由(1)知∠AEO=∠ACB,又∠A=∠A,
∴△AOE∽△ABC,
∴,
设⊙O的半径为r,则,
解得:r=4,
∴⊙O的面积π×42=16π.

点评:
本题考查了等腰三角形的性质,切线的判定,平行线的性质和判定,相似三角形的性质和判定的应用,主要考查学生的推理和计算能力,用了方程思想.

 
(2013?苏州)如图,AB是半圆的直径,点D是AC的中点,∠ABC=50°,则∠DAB等于
A.55° B.60° C.65° D.70°

(2013?苏州)如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧的弧长为 ▲ .
(结果保留π)

2013?苏州)如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.
(1)求证:BD=BF;
(2)若CF=1,cosB=,求⊙O的半径.

(2013?宿迁)已知与相切,两圆半径分别为和,则圆心距的值是 ▲ .
(2013?宿迁)已知圆锥的底面周长是,其侧面展开后所得扇形的圆心角为,则该圆锥的母线长是 ▲ .
(2013?宿迁)如图,是半圆的直径,且,点C为半圆上的一点.将此半圆沿所在的直线折叠,若圆弧恰好过圆心,则图中阴影部分的面积是 ▲ .(结果保留)


(2013?宿迁)如图,在中,,边的垂直平分线交于点,交于点,连接.
(1)若,求证:是△外接圆的切线;
(2)若,,求△外接圆的直径.


(2013?常州)已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是(  )
 
A.
相离
B.
相切
C.
相交
D.
无法判断


考点:
直线与圆的位置关系.3718684

分析:
根据圆O的半径和圆心O到直线l的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.

解答:
解:∵⊙O的半径为6,圆心O到直线l的距离为5,
∵6>5,即:d<r,
∴直线L与⊙O的位置关系是相交.
故选;C.

点评:
本题主要考查对直线与圆的位置关系的性质的理解和掌握,能熟练地运用性质进行判断是解此题的关键.

 
(2013?常州)已知扇形的半径为6cm,圆心角为150°,则此扇形的弧长是 5π cm,扇形的面积是 15π cm2(结果保留π).
考点:
扇形面积的计算;弧长的计算.3718684

分析:
根据扇形的弧长公式l=和扇形的面积=,分别进行计算即可.

解答:
解:∵扇形的半径为6cm,圆心角为150°,
∴此扇形的弧长是:l==5π(cm),
根据扇形的面积公式,得
S扇==15π(cm2).
故答案为:5π,15π.

点评:
此题主要考查了扇形弧长公式以及扇形面积公式的应用,熟练记忆运算公式进行计算是解题关键.

。
(2013?常州)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC= 2 .

考点:
圆周角定理;含30度角的直角三角形;勾股定理;圆心角、弧、弦的关系.

分析:
根据直径所对的圆周角是直角可得∠BAD=∠BCD=90°,然后求出∠CAD=30°,利用同弧所对的圆周角相等求出∠CBD=∠CAD=30°,根据圆内接四边形对角互补求出∠BDC=60°再根据等弦所对的圆周角相等求出∠ADB=∠ADC,从而求出∠ADB=30°,解直角三角形求出BD,再根据直角三角形30°角所对的直角边等于斜边的一半解答即可.

解答:
解:∵BD为⊙O的直径,
∴∠BAD=∠BCD=90°,
∵∠BAC=120°,
∴∠CAD=120°﹣90°=30°,
∴∠CBD=∠CAD=30°,
又∵∠BAC=120°,
∴∠BDC=180°﹣∠BAC=180°﹣120°=60°,
∵AB=AC,
∴∠ADB=∠ADC,
∴∠ADB=∠BDC=×60°=30°,
∵AD=6,
∴在Rt△ABD中,BD=AD÷cos60°=6÷=4,
在Rt△BCD中,DC=BD=×4=2.
故答案为:2.

点评:
本题考查了圆周角定理,直角三角形30°角所对的直角边等于斜边的一半,以及圆的相关性质,熟记各性质是解题的关键.

 
(2013?常州)在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.
(1)当OC∥AB时,∠BOC的度数为 45°或135° ;
(2)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值.
(3)连接AD,当OC∥AD时,
①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.

考点:
圆的综合题.3718684

专题:
综合题.

分析:
(1)根据点A和点B坐标易得△OAB为等腰直角三角形,则∠OBA=45°,由于OC∥AB,所以当C点在y轴左侧时,有∠BOC=∠OBA=45°;当C点在y轴右侧时,有∠BOC=180°﹣∠OBA=135°;
(2)由△OAB为等腰直角三角形得AB=OA=6,根据三角形面积公式得到当点C到AB的距离最大时,△ABC的面积最大,过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,
此时C点到AB的距离的最大值为CE的长然后利用等腰直角三角形的性质计算出OE,然后计算△ABC的面积;
(3)①过C点作CF⊥x轴于F,易证Rt△OCF∽Rt△AOD,则=,即=,解得CF=,再利用勾股定理计算出OF=,则可得到C点坐标;
②由于OC=3,OF=,所以∠COF=30°,则可得到∴BOC=60°,∠AOD=60°,然后根据“SAS”判断△BOC≌△AOD,所以∠BCO=∠ADC=90°,再根据切线的判定定理可确定
直线BC为⊙O的切线.

解答:
解:(1)∵点A(6,0),点B(0,6),
∴OA=OB=6,
∴△OAB为等腰直角三角形,
∴∠OBA=45°,
∵OC∥AB,
∴当C点在y轴左侧时,∠BOC=∠OBA=45°;当C点在y轴右侧时,∠BOC=180°﹣∠OBA=135°;
(2)∵△OAB为等腰直角三角形,
∴AB=OA=6,
∴当点C到AB的距离最大时,△ABC的面积最大,
过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,如图,此时C点到AB的距离的最大值为CE的长,
∵△OAB为等腰直角三角形,
∴AB=OA=6,
∴OE=AB=3,
∴CE=OC CE=3 3,△ABC的面积=CE?AB=×(3 3)×6=9 18.
∴当点C在⊙O上运动到第三象限的角平分线与圆的交点位置时,△ABC的面积最大,最大值为9 18.
(3)①如图,过C点作CF⊥x轴于F,
∵OC∥AD,
∴∠ADO=∠COD=90°,
∴∠DOA ∠DAO=90°
而∠DOA ∠COF=90°,
∴∠COF=∠DAO,
∴Rt△OCF∽Rt△AOD,
∴=,即=,解得CF=,
在Rt△OCF中,OF==,
∴C点坐标为(﹣,);
②直线BC是⊙O的切线.理由如下:
在Rt△OCF中,OC=3,OF=,
∴∠COF=30°,
∴∠OAD=30°,
∴∠BOC=60°,∠AOD=60°,
∵在△BOC和△AOD中
,
∴△BOC≌△AOD(SAS),
∴∠BCO=∠ADC=90°,
∴OC⊥BC,
∴直线BC为⊙O的切线.



点评:
本题考查了圆的综合题:掌握切线的判定定理、平行线的性质和等腰直角三角形的判定与性质;熟练运用勾股定理和相似比进行几何计算.

(2013?淮安)若扇形的半径为6,圆心角为120°,则此扇形的弧长是(  )
 
A.
3π
B.
4π
C.
5π
D.
6π


考点:
弧长的计算.3718684

分析:
根据弧长的公式l=进行计算即可.

解答:
解:∵扇形的半径为6,圆心角为120°,
∴此扇形的弧长==4π.
故选B.

点评:
本题考查了弧长的计算.此题属于基础题,只需熟记弧长公式即可.

(2013?淮安)如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是(  )

 
A.
40°
B.
50°
C.
80°
D.
100°


考点:
圆周角定理.3718684

分析:
在等腰三角形OBC中求出∠BOC,继而根据圆周角定理可求出∠A的度数.

解答:
解:∵OC=OB,
∴∠OCB=∠OBC=50°,
∴∠BOC=180°﹣50°﹣50°=80°,
∴∠A=∠BOC=40°.
故选A.

点评:
此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.

(2013?淮安)如图,AB是⊙0的直径,C是⊙0上的一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且∠BAC=∠DAC.
(1)猜想直线MN与⊙0的位置关系,并说明理由;
(2)若CD=6,cos=∠ACD=,求⊙0的半径.

考点:
切线的判定;解直角三角形.3718684

分析:
(1)连接OC,推出AD∥OC,推出OC⊥MN,根据切线的判定推出即可;
(2)求出AD、AB长,证△ADC∽△ACB,得出比例式,代入求出AB长即可.

解答:
解:(1)直线MN与⊙0的位置关系是相切,
理由是:连接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵∠CAB=∠DAC,
∴∠DAC=∠OCA,
∴OC∥AD,
∵AD⊥MN,
∴OC⊥MN,
∵OC为半径,
∴MN是⊙O切线;
(2)∵CD=6,cos∠ACD==,
∴AC=10,由勾股定理得:AD=8,
∵AB是⊙O直径,AD⊥MN,
∴∠ACB=∠ADC=90°,
∵∠DAC=∠BAC,
∴△ADC∽△ACB,
∴=,
∴=,
∴AB=12.5,
∴⊙O半径是×12.5=6.25.


点评:
本题考查了切线的判定,等腰三角形的判定和性质,平行线性质,相似三角形的性质和判定的应用,主要考查学生运用定理进行推理和计算的能力.

 (2013?南京)如图,圆O1、圆O2的圆心O1、O2在直线l上,圆O1
的半径为2 cm,圆O2的半径为3 cm,O1O2=8 cm。
圆O1以1 cm/s的速度沿直线l向右运动,7s后停止
运动,在此过程中,圆O1与圆O2没有出现的位置关
系是 (A) 外切 (B) 相交 (C) 内切 (D) 内含
(2013?南京)如图,AD是圆O的切线,切点为A,AB是圆O
的弦。过点B作BC//AD,交圆O于点C,连接AC,过
点C作CD//AB,交AD于点D。连接AO并延长交BC
于点M,交过点C的直线于点P,且(BCP=(ACD。
(1) 判断直线PC与圆O的位置关系,并说明理由:
(2) 若AB=9,BC=6,求PC的长。
(2013?苏州)如图,AB是半圆的直径,点D是AC的中点,∠ABC=50°,则∠DAB等于(  )

 
A.
55°
B.
60°
C.
65°
D.
70°


考点:
圆周角定理;圆心角、弧、弦的关系.

专题:
计算题.

分析:
连结BD,由于点D是AC弧的中点,即弧CD=弧AD,根据圆周角定理得∠ABD=∠CBD,则∠ABD=25°,再根据直径所对的圆周角为直角得到∠ADB=90°,然后利用三角形内角和定理可计算出∠DAB的度数.

解答:
解:连结BD,如图,
∵点D是AC弧的中点,即弧CD=弧AD,
∴∠ABD=∠CBD,
而∠ABC=50°,
∴∠ABD=×50°=25°,
∵AB是半圆的直径,
∴∠ADB=90°,
∴∠DAB=90°﹣25°=65°.
故选C.


点评:
本题考查了圆周角定理及其推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角为直角.


(2013?苏州)如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧的弧长为 π .(结果保留π)

考点:
切线的性质;含30度角的直角三角形;弧长的计算.

专题:
计算题.

分析:
连接OB,OC,由AB为圆的切线,利用切线的性质得到三角形AOB为直角三角形,根据30度所对的直角边等于斜边的一半,由OA求出OB的长,且∠AOB为60度,再由BC与OA平行,利用两直线平行内错角相等得到∠OBC为60度,又OB=OC,得到三角形BOC为等边三角形,确定出∠BOC为60度,利用弧长公式即可求出劣弧BC的长.

解答:
解:连接OB,OC,
∵AB为圆O的切线,
∴∠ABO=90°,
在Rt△ABO中,OA=2,∠OAB=30°,
∴OB=1,∠AOB=60°,
∵BC∥OA,
∴∠OBC=∠AOB=60°,
又OB=OC,
∴△BOC为等边三角形,
∴∠BOC=60°,
则劣弧长为=π.
故答案为:π


点评:
此题考查了切线的性质,含30度直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解本题的关键.

(2013?苏州)如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.
(1)求证:BD=BF;
(2)若CF=1,cosB=,求⊙O的半径.

考点:
切线的性质;圆周角定理.3718684

专题:
计算题.

分析:
(1)连接OE,由AC为圆O的切线,利用切线的性质得到OE垂直于AC,再由BC垂直于AC,得到OE与BC平行,根据O为DB的中点,得到E为DF的中点,即OE为三角形DBF的中位线,利用中位线定理得到OE为BF的一半,再由OE为DB的一半,等量代换即可得证;
(2)在直角三角形ABC中,由cosB的值,设BC=3x,得到AB=5x,由BC CF表示出BF,即为BD的长,再由OE为BF的一半,表示出OE,由AB﹣OB表示出AO,在直角三角形AOE中,利用两直线平行同位角相等得到∠AOE=∠B,得到cos∠AOE=cosB,根据cosB的值,利用锐角三角函数定义列出关于x的方程,求出方程的解得到x的值,即可求出圆的半径长.

解答:
(1)证明:连接OE,
∵AC与圆O相切,
∴OE⊥AC,
∵BC⊥AC,
∴OE∥BC,
又∵O为DB的中点,
∴E为DF的中点,即OE为△DBF的中位线,
∴OE=BF,
又∵OE=BD,
则BF=BD;
(2)解:设BC=3x,根据题意得:AB=5x,
又∵CF=1,
∴BF=3x 1,
由(1)得:BD=BF,
∴BD=3x 1,
∴OE=OB=,AO=AB﹣OB=5x﹣=,
∵OE∥BF,
∴∠AOE=∠B,
∴cos∠AOE=cosB,即=,即=,
解得:x=,
则圆O的半径为=.


点评:
此题考查了切线的性质,锐角三角函数定义,以及圆周角定理,熟练掌握切线的性质是解本题的关键.

(2013?泰州)如图,⊙O的半径为4cm,直线l与⊙O相交于A, B两点,ABcm, P为直线l上一动点,以l cm为半径的⊙P与⊙O没有公共点.设PO=d cm,则d的范围___________________.
【答案】:

(2013?泰州)如图AB是⊙O的直径,AC、 DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.
(1)求证:DP是⊙O的切线;
(2)若⊙O的半径为3cm,求图中阴影部分的面积.

解:(1)证明:连接OD,BD
∵OD=OB ∠ABD=∠ACD=60°
∴△OBD是等边三角形
∴∠DOB=60°
∵∠DOB ∠ODP ∠APD =180° ∠APD=30°
∴∠ODP =90°
∴PD⊥OD
∴PD是⊙O的切线.
(2)在Rt△POD中,OD=3cm, ∠APD=30°
∵
∴
∴图中阴影部分的面积
(2013?南通)如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是
A.1B.
C.D.2
(2013?南通) 如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对
称中心O旋转180°,则点D所转过的路径长为
A.4π cmB.3π cm
C.2π cm D.π cm

(2013?南通)如图,⊙O的直径AB垂直于弦CD,垂足P是OB的中点,
CD=6 cm,求直径AB的长.

(2013?南宁)如图,圆锥形的烟囱底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是(  )

 
A.
150πcm2
B.
300πcm2
C.
600πcm2
D.
150πcm2


考点:
圆锥的计算.3718684

专题:
计算题.

分析:
根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,然后根据扇形的面积公式计算即可.

解答:
解:烟囱帽所需要的铁皮面积=×20×2π×15=300π(cm2).
故选B.

点评:
本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.

(2013?南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为(  )

 
A.
4
B.
5
C.
4
D.
3


考点:
垂径定理;勾股定理;圆周角定理.3718684

专题:
探究型.

分析:
先根据∠BAC=∠BOD可得出=,故可得出AB⊥CD,由垂径定理即可求出DE的长,再根据勾股定理即可得出结论.

解答:
解:∵∠BAC=∠BOD,
∴=,
∴AB⊥CD,
∵AE=CD=8,
∴DE=CD=4,
设OD=r,则OE=AE﹣r=8﹣r,
在RtODE中,OD=r,DE=4,OE=8﹣r,
∵OD2=DE2 OE2,即r2=42 (8﹣r)2,解得r=5.
故选B.

点评:
本题考查的是垂径定理及圆周角定理,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.

(2013?南宁)如图,在边长为2的正三角形中,将其内切圆和三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为 ﹣π .

考点:
三角形的内切圆与内心.3718684

分析:
连接OB,以及⊙O与BC的切点,在构造的直角三角形中,通过解直角三角形易求得⊙O的半径,然后作⊙O与小圆的公切线EF,易知△BEF也是等边三角形,那么小圆的圆心也是等边△BEF的重心;由此可求得小圆的半径,即可得到四个圆的面积,从而由等边三角形的面积减去四个圆的面积和所得的差即为阴影部分的面积.

解答:
解:如图,连接OB、OD;
设小圆的圆心为P,⊙P与⊙O的切点为G;过G作两圆的公切线EF,交AB于E,交BC于F,
则∠BEF=∠BFE=90°﹣30°=60°,所以△BEF是等边三角形.
在Rt△OBD中,∠OBD=30°,
则OD=BD?tan30°=1×=,OB=2OD=,BG=OB﹣OG=;
由于⊙P是等边△BEF的内切圆,所以点P是△BEF的内心,也是重心,
故PG=BG=;
∴S⊙O=π×()2=π,S⊙P=π×()2=π;
∴S阴影=S△ABC﹣S⊙O﹣3S⊙P=﹣π﹣π=﹣π.
故答案为﹣π.


点评:
此题主要考查了等边三角形的性质、相切两圆的性质以及图形面积的计算方法,难度适中.

(2013?南宁)如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F,连接AF,AF的延长线交DE于点P.
(1)求证:DE是⊙O的切线;
(2)求tan∠ABE的值;
(3)若OA=2,求线段AP的长.

考点:
切线的判定;圆周角定理;解直角三角形.3718684

专题:
证明题.

分析:
(1)连结AD、OD,根据圆周角定理得∠ADB=90°,由AB=AC,根据等腰三角形的直线得DC=DB,所以OD为△BAC的中位线,则OD∥AC,然后利用DE⊥AC得到OD⊥DE,
这样根据切线的判定定理即可得到结论;
(2)易得四边形OAED为正方形,然后根据正切的定义计算tan∠ABE的值;
(3)由AB是⊙O的直径得∠AFB=90°,再根据等角的余角相等得∠EAP=∠ABF,则tan∠EAP=tan∠ABE=,在Rt△EAP中,利用正切的定义可计算出EP,然后利用勾股定理可计算出AP.

解答:
(1)证明:连结AD、OD,如图,
∵AB是⊙O的直径,
∴∠ADB=90°,
∵AB=AC,
∴AD垂直平分BC,即DC=DB,
∴OD为△BAC的中位线,
∴OD∥AC,
而DE⊥AC,
∴OD⊥DE,
∴DE是⊙O的切线;
(2)解:∵OD⊥DE,DE⊥AC,
∴四边形OAED为矩形,
而OD=OA,
∴四边形OAED为正方形,
∴AE=AO,
∴tan∠ABE==;
(3)解:∵AB是⊙O的直径,
∴∠AFB=90°,
∴∠ABF ∠FAB=90°,
而∠EAP ∠FAB=90°,
∴∠EAP=∠ABF,
∴tan∠EAP=tan∠ABE=,
在Rt△EAP中,AE=2,
∵tan∠EAP==,
∴EP=1,
∴AP==.


点评:
本题考查了圆的切线的判定:过半径的外端点与半径垂直的直线为圆的切线.也考查了圆周角定理和解直角三角形.

(2013?钦州)已知⊙O1与⊙O2的半径分别为2cm和3cm,若O1O2=5cm.则⊙O1与⊙O2的位置关系是(  )
 
A.
外离
B.
相交
C.
内切
D.
外切


考点:
圆与圆的位置关系.

分析:
由⊙O1、⊙O2的半径分别是2cm和3cm,若O1O2=5cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出⊙O1和⊙O2的位置关系.

解答:
解:∵⊙O1、⊙O2的半径分别是2cm和3cm,若O1O2=5cm,
又∵2 3=5,
∴⊙O1和⊙O2的位置关系是外切.
故选D.

点评:
此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.
圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离?d>R r;②两圆外切?d=R r;③两圆相交?R﹣r<d<R r(R≥r);④两圆内切?d=R﹣r(R>r);⑤两圆内含?d<R﹣r(R>r).

 (2013?钦州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.
(1)求⊙O的半径OD;
(2)求证:AE是⊙O的切线;
(3)求图中两部分阴影面积的和.

考点:
切线的判定与性质;扇形面积的计算.3718684

专题:
计算题.

分析:
(1)由AB为圆O的切线,利用切线的性质得到OD垂直于AB,在直角三角形BDO中,利用锐角三角函数定义,根据tan∠BOD及BD的值,求出OD的值即可;
(2)连接OE,由AE=OD=3,且OD与AE平行,利用一组对边平行且相等的四边形为平行四边形,根据平行四边形的对边平行得到OE与AD平行,再由DA与AE垂直得到OE与AC垂直,即可得证;
(3)阴影部分的面积由三角形BOD的面积 三角形ECO的面积﹣扇形DOF的面积﹣扇形EOG的面积,求出即可.

解答:
解:(1)∵AB与圆O相切,
∴OD⊥AB,
在Rt△BDO中,BD=2,tan∠BOD==,
∴OD=3;
(2)连接OE,
∵AE=OD=3,AE∥OD,
∴四边形AEOD为平行四边形,
∴AD∥EO,
∵DA⊥AE,
∴OE⊥AC,
又∵OE为圆的半径,
∴AC为圆O的切线;
(3)∵OD∥AC,
∴=,即=,
∴AC=7.5,
∴EC=AC﹣AE=7.5﹣3=4.5,
∴S阴影=S△BDO S△OEC﹣S扇形BOD﹣S扇形EOG=×2×3 ×3×4.5﹣
=3 ﹣
=.


点评:
此题考查了切线的判定与性质,扇形的面积,锐角三角函数定义,平行四边形的判定与性质,以及平行线的性质,熟练掌握切线的判定与性质是解本题的关键.

(2013?玉林)如图,实线部分是半径为15m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长是 40π m.

考点:
弧长的计算.

分析:
如图,连接O1O2,CD,可求得∠C02O1=60°,∠C02D=120°,再由弧长公式l=求得答案.

解答:
解::如图,连接O1O2,CD,CO2,
∵O1O2=C02=CO1=15cm,
∴∠C02O1=60°,
∴∠C02D=120°,
则圆O1,O2的圆心角为360°﹣120°=240°,
则游泳池的周长为=2×=2×=40π(m).
故答案为:40π.


点评:
本题考查了弧长的计算,解答本题的关键是根据弧长公式计算,在计算的过程中首先要利用圆的半径的关系求出圆心角.

 (2013?玉林)如图,△ABC是⊙O内接正三角形,将△ABC绕点O顺时针旋转30°得到△DEF,DE分别交AB,AC于点M,N,DF交AC于点Q,则有以下结论:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周长等于AC的长;④NQ=QC.其中正确的结论是 ①②③ .(把所有正确的结论的序号都填上)

考点:
圆的综合题.3718684

分析:
连结OA、OD、OF、OC、DC、AD、CF,根据旋转的性质得∠AOD=∠COF=30°,再根据圆周角定理得∠ACD=∠FDC=15°,然后根据三角形外角性质得∠DQN=∠QCD ∠QDC=30°;
同理可得∠AMN=30°,由△DEF为等边三角形得DE=DF,则弧DE=弧DF,得到弧AE=弧DC,所以∠ADE=∠DAC,根据等腰三角形的性质有ND=NA,于是可根据“AAS”判断△DNQ≌△ANM;利用QD=QC,ND=NA可判断△DNQ的周长等于AC的长;由于∠NDQ=60°,∠DQN=30°,则∠DNQ=90°,所以QD>NQ,而QD=QC,所以QC>NQ.

解答:
解:连结OA、OD、OF、OC、DC、AD、CF,如图,
∵△ABC绕点O顺时针旋转30°得到△DEF,
∴∠AOD=∠COF=30°,
∴∠ACD=∠AOD=15°,∠FDC=∠COF=15°,
∴∠DQN=∠QCD ∠QDC=15° 15°=30°,所以①正确;
同理可得∠AMN=30°,
∵△DEF为等边三角形,
∴DE=DF,
∴弧DE=弧DF,
∴弧AE 弧AD=弧DC 弧CF,
而弧AD=弧CF,
∴弧AE=弧DC,
∴∠ADE=∠DAC,
∴ND=NA,
在△DNQ和△ANM中
,
∴△DNQ≌△ANM(AAS),所以②正确;
∵∠ACD=15°,∠FDC=15°,
∴QD=QC,
而ND=NA,
∴ND QD NQ=NA QC NQ=AC,
即△DNQ的周长等于AC的长,所以③正确;
∵△DEF为等边三角形,
∴∠NDQ=60°,
而∠DQN=30°,
∴∠DNQ=90°,
∴QD>NQ,
∵QD=QC,
∴QC>NQ,所以④错误.
故答案为①②③.


点评:
本题考查了圆的综合题:弧、弦和圆心角之间的关系以及圆周角定理在有关圆的几何证明中经常用到,同时熟练掌握三角形全等的判定、等边三角形的性质以及旋转的性质.

(2013?玉林)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.
(1)求证:AC是⊙O的切线:
(2)若BF=8,DF=,求⊙O的半径r.

考点:
切线的判定.

分析:
(1)连接OA、OD,求出∠D ∠OFD=90°,推出∠CAF=∠CFA,∠OAD=∠D,求出∠OAD ∠CAF=90°,根据切线的判定推出即可;
(2)OD=r,OF=8﹣r,在Rt△DOF中根据勾股定理得出方程r2 (8﹣r)2=()2,求出即可.

解答:
(1)证明:
连接OA、OD,
∵D为弧BE的中点,
∴OD⊥BC,
∠DOF=90°,
∴∠D ∠OFD=90°,
∵AC=AF,OA=OD,
∴∠CAF=∠CFA,∠OAD=∠D,
∵∠CFA=∠OFD,
∴∠OAD ∠CAF=90°,
∴OA⊥AC,
∵OA为半径,
∴AC是⊙O切线;
(2)解:∵⊙O半径是r,
当F在半径OE上时,
∴OD=r,OF=8﹣r,
在Rt△DOF中,r2 (8﹣r)2=()2,
r=,r=(舍去);
当F在半径OB上时,
∴OD=r,OF=r﹣8,
在Rt△DOF中,r2 (r﹣8)2=()2,
r=,r=(舍去);
即⊙O的半径r为.

点评:
本题考查了切线的判定,等腰三角形的性质和判定,勾股定理等知识点的应用,主要考查学生的推理和计算的能力.

(2013?包头)用一个圆心角为120°,半径为2的扇形作一个圆锥的侧面,则这个圆锥的底面圆半径为(  )
 
A.

B.

C.

D.



考点:
圆锥的计算.3718684

分析:
设圆锥底面的半径为r,由于圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,则2πr=,然后解方程即可.

解答:
解:设圆锥底面的半径为r,
根据题意得2πr=,解得:r=.
故选D.

点评:
本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.


(2013?包头)如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB= 28 度.

考点:
圆周角定理;垂径定理.3718684

分析:
根据垂径定理可得点B是中点,由圆周角定理可得∠ADB=∠BOC,继而得出答案.

解答:
解:∵OB⊥AC,
∴=,
∴∠ADB=∠BOC=28°.
故答案为:28.

点评:
此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.

(2013?包头)如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.
(1)求证:PA是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG?AB=12,求AC的长;
(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.

考点:
圆的综合题.3718684

分析:
(1)根据圆周角定理得出∠ACD=90°以及利用∠PAC=∠PBA得出∠CAD ∠PAC=90°进而得出答案;
(2)首先得出△CAG∽△BAC,进而得出AC2=AG?AB,求出AC即可;
(3)先求出AF的长,根据勾股定理得:AG=,即可得出sin∠ADB=,利用∠ACE=∠ACB=∠ADB,求出即可.

解答:
(1)证明:连接CD,
∵AD是⊙O的直径,
∴∠ACD=90°,
∴∠CAD ∠ADC=90°,
又∵∠PAC=∠PBA,∠ADC=∠PBA,
∴∠PAC=∠ADC,
∴∠CAD ∠PAC=90°,
∴PA⊥OA,而AD是⊙O的直径,
∴PA是⊙O的切线;
(2)解:由(1)知,PA⊥AD,又∵CF⊥AD,∴CF∥PA,
∴∠GCA=∠PAC,又∵∠PAC=∠PBA,
∴∠GCA=∠PBA,而∠CAG=∠BAC,
∴△CAG∽△BAC,
∴=,
即AC2=AG?AB,
∵AG?AB=12,
∴AC2=12,
∴AC=2;
(3)解:设AF=x,∵AF:FD=1:2,∴FD=2x,
∴AD=AF FD=3x,
在Rt△ACD中,∵CF⊥AD,∴AC2=AF?AD,
即3x2=12,
解得;x=2,
∴AF=2,AD=6,∴⊙O半径为3,
在Rt△AFG中,∵AF=2,GF=1,
根据勾股定理得:AG===,
由(2)知,AG?AB=12,
∴AB==,
连接BD,
∵AD是⊙O的直径,
∴∠ABD=90°,
在Rt△ABD中,∵sin∠ADB=,AD=6,
∴sin∠ADB=,
∵∠ACE=∠ACB=∠ADB,
∴sin∠ACE=.


点评:
此题主要考查了圆的综合应用以及勾股定理和锐角三角函数关系等知识,根据已知得出AG的长以及AB的长是解题关键.

 
(2013?呼和浩特)一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是 180° .
考点:
圆锥的计算.3718684

分析:
根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.

解答:
解:设母线长为R,底面半径为r,
∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,
∵侧面积是底面积的2倍,
∴2πr2=πrR,
∴R=2r,
设圆心角为n,有=πR,
∴n=180°.
故答案为:180.

点评:
本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长,以及利用扇形面积公式求出是解题的关键.


(2013?呼和浩特)在平面直角坐标系中,已知点A(4,0)、B(﹣6,0),点C是y轴上的一个动点,当∠BCA=45°时,点C的坐标为 (0,12)或(0,﹣12) .
考点:
圆周角定理;坐标与图形性质;勾股定理.3718684

分析:
如解答图所示,构造含有90°圆心角的⊙P,则⊙P与y轴的交点即为所求的点C.
注意点C有两个.

解答:
解:设线段BA的中点为E,
∵点A(4,0)、B(﹣6,0),∴AB=10,E(﹣1,0).
(1)如答图1所示,过点E在第二象限作EP⊥BA,且EP=AB=5,则易知△PBA为等腰直角三角形,∠BPA=90°,PA=PB=;
以点P为圆心,PA(或PB)长为半径作⊙P,与y轴的正半轴交于点C,
∵∠BCA为⊙P的圆周角,
∴∠BCA=∠BPA=45°,即则点C即为所求.
过点P作PF⊥y轴于点F,则OF=PE=5,PF=1,
在Rt△PFC中,PF=1,PC=,由勾股定理得:CF==7,
∴OC=OF CF=5 7=12,
∴点C坐标为(0,12);
(2)如答图2所示,在第3象限可以参照(1)作同样操作,同理求得y轴负半轴上的点C坐标为(0,﹣12).
综上所述,点C坐标为(0,12)或(0,﹣12).
故答案为:(0,12)或(0,﹣12).



点评:
本题难度较大.由45°的圆周角联想到90°的圆心角是解题的突破口,也是本题的难点所在.

013?呼和浩特)如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.
(1)求证:点F是AD的中点;
(2)求cos∠AED的值;
(3)如果BD=10,求半径CD的长.

考点:
相似三角形的判定与性质;勾股定理;圆周角定理;解直角三角形.3718684

分析:
(1)由AD是△ABC的角平分线,∠B=∠CAE,易证得∠ADE=∠DAE,即可得ED=EA,又由ED是直径,根据直径所对的圆周角是直角,可得EF⊥AD,由三线合一的知识,即可判定点F是AD的中点;
(2)首先连接DM,设EF=4k,df=3k,然后由勾股定理求得ED的长,继而求得DM与ME的长,由余弦的定义,即可求得答案;
(3)易证得△AEC∽△BEA,然后由相似三角形的对应边成比例,可得方程:(5k)2=k?(10 5k),解此方程即可求得答案.

解答:
(1)证明:∵AD是△ABC的角平分线,
∴∠1=∠2,
∵∠ADE=∠1 ∠B,∠DAE=∠2 ∠3,且∠B=∠3,
∴∠ADE=∠DAE,
∴ED=EA,
∵ED为⊙O直径,
∴∠DFE=90°,
∴EF⊥AD,
∴点F是AD的中点;
(2)解:连接DM,
设EF=4k,df=3k,
则ED==5k,
∵AD?EF=AE?DM,
∴DM===k,
∴ME==k,
∴cos∠AED==;
(3)解:∵∠B=∠3,∠AEC为公共角,
∴△AEC∽△BEA,
∴AE:BE=CE:AE,
∴AE2=CE?BE,
∴(5k)2=k?(10 5k),
∵k>0,
∴k=2,
∴CD=k=5.


点评:
此题考查了相似三角形的判定与性质、圆周角定理、等腰三角形的判定与性质、勾股定理以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.

(2013?毕节)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径( A )
A. 5 B. 10 C. 8 D. 6

(2013?毕节)在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为( A )
A. 2 , 22.5° B. 3 , 30° C. 3 , 22.5° D. 2 , 30°


(2013?毕节)已知⊙O1与⊙O2的半径分别是、,且、满足,圆心距则两圆的位置关系是 外切 。
(2013?毕节)已知圆锥的底面半径是2cm,母线长为5cm,则圆锥的侧面积是 10π (结果保留π)
(2013?遵义)如图,将边长为1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为(  )

 
A.
cm
B.
(2 π)cm
C.
cm
D.
3cm


考点:
弧长的计算;等边三角形的性质;旋转的性质.3718684

分析:
通过观察图形,可得从开始到结束经过两次翻动,求出点B两次划过的弧长,即可得出所经过路径的长度.

解答:
解:∵△ABC是等边三角形,
∴∠ACB=60°,
∴∠AC(A)=120°,
点B两次翻动划过的弧长相等,
则点B经过的路径长=2×=π.
故选C.

点评:
本题考查了弧长的计算,解答本题的关键是仔细观察图形,得到点B运动的路径,注意熟练掌握弧长的计算公式.

(2013?遵义)如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC= 52° 
度.

考点:
圆周角定理;垂径定理.3718684

分析:
由OC是⊙O的半径,AB是弦,且OC⊥AB,根据垂径定理的即可求得:=,又由圆周角定理,即可求得答案.

解答:
解:∵OC是⊙O的半径,AB是弦,且OC⊥AB,
∴=,
∴∠BOC=2∠APC=2×26°=52°.
故答案为:52°.

点评:
此题考查了垂径定理与圆周角定理.此题比较简单,注意掌握数形结合思想的应用.

2013?遵义)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为  (结果保留根号).

考点:
扇形面积的计算.3718684

分析:
若两个阴影部分的面积相等,那么△ABC和扇形ADF的面积就相等,可分别表示出两者的面积,然后列出方程即可求出AF的长度.

解答:
解:∵图中两个阴影部分的面积相等,
∴S扇形ADF=S△ABC,即:=×AC×BC,
又∵AC=BC=1,
∴AF2=,
∴AF=.
故答案为.


点评:
此题主要考查了扇形面积的计算方法及等腰直角三角形的性质,能够根据题意得到△ABC和扇形ADF的面积相等,是解决此题的关键,难度一般.

 (2013?北京)如图,AB是⊙O的直径,PA,PC分别与⊙O 相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E。
(1)求证:∠EPD=∠EDO
(2)若PC=6,tan∠PDA=,求OE的长。[中国教育出&版*&%@网]
解析:


(2013?北京)对于平面直角坐标系O中的点P和⊙C,给出如下定义:若⊙C上存在两个点A,B,使得∠APB=60°,则称P为⊙C 的关联点。
已知点D(,),E(0,-2),F(,0)
(1)当⊙O的半径为1时,
①在点D,E,F中,⊙O的关联点是__________;
②过点F作直线交轴正半轴于点G,使∠GFO=30°,若直线上的点P(,)是⊙O的关联点,求的取值范围;
(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径的取值范围。

解析:【解析】(1) ①;
② 由题意可知,若点要刚好是圆的关联点;
需要点到圆的两条切线和之间所夹
的角度为;
由图可知,则,
连接,则;
∴若点为圆的关联点;则需点到圆心的距离满足;
由上述证明可知,考虑临界位置的点,如图2;
点到原点的距离;
过作轴的垂线,垂足为;
;
∴;
∴;
∴;
∴;
易得点与点重合,过作轴于点;
易得;
∴;
从而若点为圆的关联点,则点必在线段上;
∴;
(2) 若线段上的所有点都是某个圆的关联点,欲使这个圆的半径最小,
则这个圆的圆心应在线段的中点;
考虑临界情况,如图3;
即恰好点为圆的关联时,则;
∴此时;
故若线段上的所有点都是某个圆的关联点,
这个圆的半径的取值范围为.

【点评】“新定义”问题最关键的是要能够把“新定义”转化为自己熟悉的知识,通过第(2)问开
头部分的解析,可以看出本题的“关联点”本质就是到圆心的距离小于或等于倍半
径的点.
了解了这一点,在结合平面直角坐标系和圆的知识去解答就事半功倍了.
(2013?天津)正六边形的边心距与边长之比为(  )
 
A.
:3
B.
:2
C.
1:2
D.
:2

考点:
正多边形和圆.3718684

分析:
首先根据题意画出图形,然后设六边形的边长是a,由勾股定理即可求得OC的长,继而求得答案.

解答:
解:如图:设六边形的边长是a,
则半径长也是a;
经过正六边形的中心O作边AB的垂线OC,
则AC=AB=a,
∴OC==a,
∴正六边形的边心距与边长之比为:a:a=:2.
故选B.


点评:
此题考查了正多边形和圆的关系.此题难度不大,注意掌握数形结合思想的应用.

 
(2013?天津)如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为 55 (度).

考点:
切线的性质.3718684

分析:
首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA⊥PA,OB⊥PB,然后由四边形的内角和等于360°,求得∠AOB的度数,又由圆周角定理,即可求得答案.

解答:
解:连接OA,OB,
∵PA、PB分别切⊙O于点A、B,
∴OA⊥PA,OB⊥PB,
即∠PAO=∠PBO=90°,
∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣70°﹣90°=110°,
∴∠C=∠AOB=55°.
故答案为:55.


点评:
此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.

2013?天津)已知直线I与⊙O,AB是⊙O的直径,AD⊥I于点D.
(Ⅰ)如图①,当直线I与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;
(Ⅱ)如图②,当直线I与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.

考点:
切线的性质;圆周角定理;直线与圆的位置关系.3718684

分析:
(Ⅰ)如图①,首先连接OC,根据当直线l与⊙O相切于点C,AD⊥l于点D.易证得OC∥AD,继而可求得∠BAC=∠DAC=30°;
(Ⅱ)如图②,连接BF,由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠AFB=90°,由三角形外角的性质,可求得∠AEF的度数,又由圆的内接四边形的性质,求得∠B的度数,继而求得答案.

解答:
解:(Ⅰ)如图①,连接OC,
∵直线l与⊙O相切于点C,
∴OC⊥l,
∵AD⊥l,
∴OC∥AD,
∴∠OCA=∠DAC,
∵OA=OC,
∴∠BAC=∠OCA,
∴∠BAC=∠DAC=30°;
(Ⅱ)如图②,连接BF,
∵AB是⊙O的直径,
∴∠AFB=90°,
∴∠BAF=90°﹣∠B,
∴∠AEF=∠ADE ∠DAE=90° 18°=108°,
在⊙O中,四边形ABFE是圆的内接四边形,
∴∠AEF ∠B=180°,
∴∠B=180°﹣108°=72°,
∴∠BAF=90°﹣∠B=180°﹣72°=18°.


点评:
此题考查了切线的性质、圆周角定理以及圆的内接四边形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.

 (2013山东滨州,4,3分)如图,在⊙O中圆心角∠BOC=78°,则圆周角∠BAC的大小为
A.156° B.78° C.39° D.12°Www.zx98.com

【答案】 C.
(2013山东滨州,7,3分)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为
A.6, B.,3 C.6,3 D.,
【答案】B.
(2013山东滨州,22,8分)
如图,在△ABC中,AB=AC,点O在边AB上,⊙O过点B且分别与边AB、BC相交于点D、E,EF⊥AC,垂足为F.求证:直线EF是⊙O的切线.

【解答过程】 证明:连接OE,
∵OB=OE,
∴∠B=∠OEB.
∵AB=AC,
∴∠B=∠C.
∴∠OEB=∠C.
∴OE∥AC.
∵EF⊥AC,
∴OE⊥EF.
∴直线EF是⊙O的切线.
23.(2013山东滨州,23,9分)
某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形,抽屉底面周长为180cm,高为20cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计)
【解答过程】 解:根据题意,得y=20x(-x),
整理,得y=-20x2 1800x.
∵y=-20x2 1800x=-20(x2-90x 2025) 40500=-20(x-45)2 40500,
∵-20<0,∴当x=45时,函数有最大值,y最大值=40500,
(2013? 德州)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为(  )

 
A.

B.

C.

D.



考点:
扇形面积的计算.

分析:
首先利用扇形公式计算出半圆的面积和扇形AOB的面积,然后求出△AOB的面积,用S半圆 S△AOB﹣S扇形AOB可求出阴影部分的面积.

解答:
解:在Rt△AOB中,AB==,
S半圆=π×()2=π,
S△AOB=OB×OA=,
S扇形OBA==,
故S阴影=S半圆 S△AOB﹣S扇形AOB=.
故选C.

点评:
本题考查了扇形的面积计算,解答本题的关键是熟练掌握扇形的面积公式,仔细观察图形,得出阴影部分面积的表达式.

即当底面的宽为45cm时,抽屉的体积最大,最大为40500cm2.
(2013? 德州)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.
(1)求AD的长;
(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.

考点:
切线的判定与性质;直角三角形斜边上的中线;平行四边形的性质.

专题:
计算题.

分析:
(1)连接BD,由ED为圆O的直径,利用直径所对的圆周角为直角得到∠DBE为直角,由BCOE为平行四边形,得到BC与OE平行,且BC=OE=1,在直角三角形ABD中,C为AD的中点,利用斜边上的中线等于斜边的一半求出AD的长即可;
(2)连接OB,由BC与OD平行,BC=OD,得到四边形BCDO为平行四边形,由AD为圆的切线,利用切线的性质得到OD垂直于AD,可得出四边形BCDO为矩形,利用矩形的性质得到OB垂直于BC,即可得出BC为圆O的切线.

解答:
解:(1)连接BD,则∠DBE=90°,
∵四边形BCOE为平行四边形,
∴BC∥OE,BC=OE=1,
在Rt△ABD中,C为AD的中点,
∴BC=AD=1,
则AD=2;
(2)连接OB,
∵BC∥OD,BC=OD,
∴四边形BCDO为平行四边形,
∵AD为圆O的切线,
∴OD⊥AD,
∴四边形BCDO为矩形,
∴OB⊥BC,
则BC为圆O的切线.


点评:
此题考查了切线的判定与性质,直角三角形斜边上的中线性质,以及平行四边形的判定与性质,熟练掌握切线的判定与性质是解本题的关键.


(2013? 东营)已知的半径=2,的半径是方程的根,与的圆心距为1,那么两圆的位置关系为( B )
A.内含B.内切C.相交D.外切
(2013? 东营)如图,正方形ABCD中,分别以B、D为圆心,以正方形
的边长a为半径画弧,形成树叶形(阴影部分)图案,则树
叶形图案的周长为( A )
A. B. 
C. D. 
(2013? 东营)如图,为的直径,点为上一点,若,过点作直线垂直于射线AM,垂足为点D.
(1)试判断与的位置关系,并说明理由;
(2)若直线与的延长线相交于点,的半径为3,并且.
求的长.

(1)解:直线CD与⊙O相切. ………………1分
理由如下:连接OC.
∵OA=OC
∴∠BAC=∠OCA
∵∠BAC=∠CAM
∴∠OCA=∠CAM
∴OC∥AM…………………………3分
∵CD⊥AM
∴OC⊥CD
∴直线与相切. …………………………5分
(2)解:
∵
∴∠COE=2∠CAB=
∴在Rt△COE中,OC=3,CE=OC·tan=.
(2013菏泽)在半径为5的圆中,30°的圆心角所对的弧长为  (结果保留π).
考点:弧长的计算.
分析:直接利用弧长公式计算即可.
解答:解:L===.
点评:主要考查弧长公式L=.[常见错误]主要错误是部分学生与扇形面积公式S=混淆,得到π错误答案,或利用计算得到0.83π或0.833π的答案. 
(2013菏泽)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.
(1)求证:AP是⊙O的切线;
(2)OC=CP,AB=6,求CD的长.

考点:切线的判定与性质;解直角三角形.
分析:(1)连接AO,AC(如图).欲证AP是⊙O的切线,只需证明OA⊥AP即可;
(2)利用(1)中切线的性质在Rt△OAP中利用边角关系求得∠ACO=60°.然后在Rt△BAC、Rt△ACD中利用余弦三角函数的定义知AC=2,CD=4.
解答:(1)证明:连接AO,AC(如图).
∵BC是⊙O的直径,
∴∠BAC=∠CAD=90°.
∵E是CD的中点,
∴CE=DE=AE.
∴∠ECA=∠EAC.
∵OA=OC,
∴∠OAC=∠OCA.
∵CD是⊙O的切线,
∴CD⊥OC.
∴∠ECA ∠OCA=90°.
∴∠EAC ∠OAC=90°.
∴OA⊥AP.
∵A是⊙O上一点,
∴AP是⊙O的切线;
(2)解:由(1)知OA⊥AP.
在Rt△OAP中,∵∠OAP=90°,OC=CP=OA,即OP=2OA,
∴sinP==,
∴∠P=30°.
∴∠AOP=60°.
∵OC=OA,
∴∠ACO=60°.
在Rt△BAC中,∵∠BAC=90°,AB=6,∠ACO=60°,
∴AC==2,
又∵在Rt△ACD中,∠CAD=90°,∠ACD=90°﹣∠ACO=30°,
∴CD===4.

点评:本题考查了切线的判定与性质、解直角三角形.注意,切线的定义的运用,解题的关键是熟记特殊角的锐角三角函数值. 
(2013? 济南)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆.则图中阴影部分的面积为
A. B.
C.  D.
(2013? 济南)如图,已知⊙O的半径为1,DE是⊙O的直径,过D点作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,若四边形BCOE是平行四边形,
(1)求AD的长;
(2)BC是⊙O的切线吗?若是,
给出证明;若不是,说明理由.

(2013济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为(  )

 A.4B.C.6D.
考点:切线的性质;等边三角形的性质;含30度角的直角三角形;勾股定理;圆周角定理.
专题:计算题.
分析:连接OD,由DF为圆的切线,利用切线的性质得到OD垂直于DF,根据三角形ABC为等边三角形,利用等边三角形的性质得到三条边相等,三内角相等,都为60°,由OD=OC,得到三角形OCD为等边三角形,进而得到OD平行与AB,由O为BC的中点,得到D为AC的中点,在直角三角形ADF中,利用30°所对的直角边等于斜边的一半求出AD的长,进而求出AC的长,即为AB的长,由AB﹣AF求出FB的长,在直角三角形FBG中,利用30°所对的直角边等于斜边的一半求出BG的长,再利用勾股定理即可求出FG的长.
解答:解:连接OD,
∵DF为圆O的切线,
∴OD⊥DF,
∵△ABC为等边三角形,
∴AB=BC=AC,∠A=∠B=∠C=60°,
∵OD=OC,
∴△OCD为等边三角形,
∴OD∥AB,
又O为BC的中点,
∴D为AC的中点,即OD为△ABC的中位线,
∴OD∥AB,
∴DF⊥AB,
在Rt△AFD中,∠ADF=30°,AF=2,
∴AD=4,即AC=8,
∴FB=AB﹣AF=8﹣2=6,
在Rt△BFG中,∠BFG=30°,
∴BG=3,
则根据勾股定理得:FG=3.
故选B

点评:此题考查了切线的性质,等边三角形的性质,含30°直角三角形的性质,勾股定理,熟练掌握切线的性质是解本题的关键. 
(2013济宁)如图1,在平面直角坐标系中,O为坐标原点,P是反比例函数y=(x>0)图象上任意一点,以P为圆心,PO为半径的圆与坐标轴分别交于点A、B.
(1)求证:线段AB为⊙P的直径;
(2)求△AOB的面积;
(3)如图2,Q是反比例函数y=(x>0)图象上异于点P的另一点,以Q为圆心,QO为半径画圆与坐标轴分别交于点C、D.
求证:DO?OC=BO?OA.

考点:反比例函数综合题.
分析:(1)∠AOB=90°,由圆周角定理的推论,可以证明AB是⊙P的直径;
(2)将△AOB的面积用含点P坐标的表达式表示出来,容易计算出结果;
(3)对于反比例函数上另外一点Q,⊙Q与坐标轴所形成的△COD的面积,依然不变,与△AOB的面积相等.
解答:(1)证明:∵∠AOB=90°,且∠AOB是⊙P中弦AB所对的圆周角,
∴AB是⊙P的直径.
(2)解:设点P坐标为(m,n)(m>0,n>0),
∵点P是反比例函数y=(x>0)图象上一点,∴mn=12.
如答图,过点P作PM⊥x轴于点M,PN⊥y轴于点N,则OM=m,ON=n.
由垂径定理可知,点M为OA中点,点N为OB中点,
∴OA=2OM=2m,OB=2ON=2n,
∴S△AOB=BO?OA=×2n×2m=2mn=2×12=24.
(3)证明:若点Q为反比例函数y=(x>0)图象上异于点P的另一点,
参照(2),同理可得:S△COD=DO?CO=24,
则有:S△COD=S△AOB=24,即BO?OA=DO?CO,
∴DO?OC=BO?OA.

点评:本题考查了反比例函数的图象与性质、圆周角定理、垂径定理等知识,难度不大.试题的核心是考查反比例函数系数的几何意义.对本题而言,若反比例函数系数为k,则可以证明⊙P在坐标轴上所截的两条线段的乘积等于4k;对于另外一点Q所形成的⊙Q,此结论依然成立. 
(2013山东莱芜,7,3分)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆柱的高为( )

A.  B.  C.  D. 
【答案】A
(2013山东莱芜,9,3分)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )

A. 135° B. 122.5° C. 115.5° D.112.5°
【答案】D
(2013山东莱芜,10,3分)下列说法错误的是( )
A.若两圆相交,则它们公共弦的垂直平分吧必过两圆的圆心
B.2+与2-互为倒数
C.若a>,则a>b
D.梯形的面积等于梯形的中位线与高的乘积的一半
【答案】D
(2013山东莱芜,14,4分)正十二边形每个内角的度数为 .
【答案】150°
(2013山东莱芜,23,10分)如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.
(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;
(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由;
(3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.

解:(1)PN与⊙O相切.
证明:连结ON,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN.
∵∠AMO=∠PMN,∴∠PNM=∠AMO.
∴∠PNO=∠PNM ∠ONA=∠AMO ∠ONA=90°.
即PN与⊙O相切.
(2)成立.
证明:连结ON,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN.
在Rt△AOM中,
∴∠OMA ∠OAM=90°, ∴∠PNM ∠ONA=90°.
∴∠PNO=180°-90°=90°.
即PN与⊙O相切.
(3)连结ON,由(2)可知∠ONP=90°.

∵∠AMO=15°,PM=PN,∴∠PNM=15°, ∠OPN=30°,
∵∠PON=60°,∠AON=30°.
作NE⊥OD,垂足为点E,则NE=ON·sin60°=1×=.
=OC·OA CO·NE
=
(2013聊城)已知一个扇形的半径为60cm,圆心角为150°,用它围成一个圆锥的侧面,那么圆锥的底面半径为 cm.
考点:圆锥的计算.
分析:首先利用扇形的弧长公式求得扇形的弧长,然后利用圆的周长公式即可求解.
解答:解:扇形的弧长是:=50πcm,
设底面半径是rcm,则2πr=50π,
解得:r=25.
故答案是:25.
点评:考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.
(2013聊城)如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=,BE=2.求证:(1)四边形FADC是菱形;
(2)FC是⊙O的切线.

考点:切线的判定与性质;菱形的判定.
分析:(1)首先连接OC,由垂径定理,可求得CE的长,又由勾股定理,可求得半径OC的长,然后由勾股定理求得AD的长,即可得AD=CD,易证得四边形FADC是平行四边形,继而证得四边形FADC是菱形;
(2)首先连接OF,易证得△AFO≌△CFO,继而可证得FC是⊙O的切线.
解答:证明:(1)连接OC,
∵AB是⊙O的直径,CD⊥AB,
∴CE=DE=CD=×4=2,
设OC=x,
∵BE=2,
∴OE=x﹣2,
在Rt△OCE中,OC2=OE2 CE2,
∴x2=(x﹣2)2 (2)2,
解得:x=4,
∴OA=OC=4,OE=2,
∴AE=6,
在Rt△AED中,AD==4,
∴AD=CD,
∵AF是⊙O切线,
∴AF⊥AB,
∵CD⊥AB,
∴AF∥CD,
∵CF∥AD,
∴四边形FADC是平行四边形,
∴?FADC是菱形;
(2)连接OF,
∵四边形FADC是菱形,
∴FA=FC,
在△AFO和△CFO中,
,
∴△AFO≌△CFO(SSS),
∴∠FCO=∠FAO=90°,
即OC⊥FC,
∵点C在⊙O上,
∴FC是⊙O的切线.


点评:此题考查了切线的判定与性质、菱形的判定与性质、垂径定理、勾股定理以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用. 
(2013?青岛)直线与半径的圆O相交,且点O到直线的距离为6,则的取值范围是( )
A、 B、 C、 D、
答案:C
解析:当圆心到直线的距离小于半径时,直线与圆相交,所以选C。
(2013?青岛)如图,AB是圆0直径,弦AC=2,∠ABC=30°,则图中阴影部分的面积是_____________
答案:
解析:连结OC,则∠BOC=120°,AB=4,所以,R=2,
扇形BOC的面积为S扇形=
三角形BOC的面积为:
所以,阴影部分面积为
(2013? 日照)如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是
A.BD⊥AC      B.AC2=2AB·AE
C.△ADE是等腰三角形 D. BC=2AD.
答案:D
解析:因为BC为直线,所以,A正确;可证△BCD≌△BAD,得BC=BA,AD=CD,
又△ADE∽△ABC,可得:AD????????????AC=ADE?AB,而AC=2AD,可知B正确;因为ADE∽△ABC,
△ABC是等腰三角形,所以,△ADE是等腰三角形,C也正确;只有D不一定成立
(2013? 日照)如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为_____________.

答案:
解析:半圆的半径为3,所以,AB=CD=3,D=AD=6,
C=3,B=6-3,设AE=x,在直角三角形EB中,
(3-x)2+(6-3)2=x2,解得:x=12-6,tan∠ADE=,所以,∠ADE=15°,∠ADF=30°,∠AOF=60°,
S半圆AD=,S扇形AOF=,
S△DOF=,
所以,阴影部分面积为:
(2013? 日照)问题背景:
如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.

(1)实践运用:
如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP AP的最小值为__________.
(2)知识拓展:
如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE EF的最小值,并写出解答过程.
解析: …………………4分
(2)解:如图,在斜边AC上截取AB′=AB,连结BB′.
∵AD平分∠BAC,
∴点B与点B′关于直线AD对称. …………6分
过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,
则线段B′F的长即为所求.(点到直线的距离最短) ………8分
在Rt△AFB/中,∵∠BAC=450, AB/=AB= 10,
,
∴BE EF的最小值为. ………………10分
(2013泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是(  )

 A.OC∥AEB.EC=BCC.∠DAE=∠ABED.AC⊥OE
考点:切线的性质;圆心角、弧、弦的关系;圆周角定理.
专题:计算题.
分析:由C为弧EB的中点,利用垂径定理的逆定理得出OC垂直于BE,由AB为圆的直径,利用直径所对的圆周角为直角得到AE垂直于BE,即可确定出OC与AE平行,选项A正确;
由C为弧BE中点,即弧BC=弧CE,利用等弧对等弦,得到BC=EC,选项B正确;
由AD为圆的切线,得到AD垂直于OA,进而确定出一对角互余,再由直角三角形ABE中两锐角互余,利用同角的余角相等得到∠DAE=∠ABE,选项C正确;
AC不一定垂直于OE,选项D错误.
解答:解:A.∵点C是的中点,
∴OC⊥BE,
∵AB为圆O的直径,
∴AE⊥BE,
∴OC∥AE,本选项正确;
B.∵=,
∴BC=CE,本选项正确;
C.∵AD为圆O的切线,
∴AD⊥OA,
∴∠DAE ∠EAB=90°,
∵∠EBA ∠EAB=90°,
∴∠DAE=∠EBA,本选项正确;
D.AC不一定垂直于OE,本选项错误,
故选D
点评:此题考查了切线的性质,圆周角定理,以及圆心角,弧及弦之间的关系,熟练掌握切线的性质是解本题的关键. 
(2013泰安)如图,AB,CD是⊙O的两条互相垂直的直径,点O1,O2,O3,O4分别是OA、OB、OC、OD的中点,若⊙O的半径为2,则阴影部分的面积为(  )

 A.8B.4C.4π 4D.4π﹣4
考点:扇形面积的计算;圆与圆的位置关系.
分析:首先根据已知得出正方形内空白面积,进而得出扇形COB中两空白面积相等,进而得出阴影部分面积.
解答:解:如图所示:可得正方形EFMN,边长为2,
正方形中两部分阴影面积为:4﹣π,
∴正方形内空白面积为:4﹣2(4﹣π)=2π﹣4,
∵⊙O的半径为2,
∴O1,O2,O3,O4的半径为1,
∴小圆的面积为:π×12=π,
扇形COB的面积为:=π,
∴扇形COB中两空白面积相等,
∴阴影部分的面积为:π×22﹣2(2π﹣4)=8.
故选:A.

点评:此题主要考查了扇形的面积公式以及正方形面积公式,根据已知得出空白面积是解题关键. 
(2013?威海)如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.
(1)求∠C的大小;
(2)求阴影部分的面积.

考点:
垂径定理;圆心角、弧、弦的关系;扇形面积的计算.3718684

分析:
(1)根据垂径定理可得=,∠C=∠AOD,然后在Rt△COE中可求出∠C的度数.
(2)连接OB,根据(1)可求出∠AOB=120°,在Rt△AOF中,求出AF,OF,然后根据S阴影=S扇形OAB﹣S△OAB,即可得出答案.

解答:
解:(1)∵CD是圆O的直径,CD⊥AB,
∴=,
∴∠C=∠AOD,
∵∠AOD=∠COE,
∴∠C=∠COE,
∵AO⊥BC,
∴∠C=30°.
(2)连接OB,
由(1)知,∠C=30°,
∴∠AOD=60°,
∴∠AOB=120°,
在Rt△AOF中,AO=1,∠AOF=60°,
∴AF=,OF=,
∴AB=,
∴S阴影=S扇形OAB﹣S△OAB=﹣××=π﹣.


点评:
本题考查了垂径定理及扇形的面积计算,解答本题的关键是利用解直角三角形的知识求出∠C、∠AOB的度数,难度一般.

 
(2013? 潍坊)如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为( ).
 A. B. C. D.
2013? 枣庄)如图,已知线段OA交⊙O于点B,且OB=AB,点P是
⊙O上的一个动点,那么∠OAP的最大值是
A.90°  B.60°
C.45° D.30°

(2013? 枣庄)如图,是⊙O的直径,是弦,直线经过点,于点,
(1)求证:是⊙O的切线;
(2)求证:;
(3)若⊙O的半径为2,,求图中阴影部分的面积.


(2013? 淄博)如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=   .

(2013? 淄博)△ABC是等边三角形,点A与点D的坐标分别是A(4,0),D(10,0).
(1)如图1,当点C与点O重合时,求直线BD的解析式;
(2)如图2,点C从点O沿y轴向下移动,当以点B为圆心,AB为半径的⊙B与y轴相切(切点为C)时,求点B的坐标;
(3)如图3,点C从点O沿y轴向下移动,当点C的坐标为C(0,)时,求∠ODB的正切值.


(2013杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值 (单位:秒)

考点:切线的性质;等边三角形的性质.
专题:分类讨论.
分析:求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;
解答:解:∵△ABC是等边三角形,
∴AB=AC=BC=AM MB=4cm,∠A=∠C=∠B=60°,
∵QN∥AC,AM=BM.
∴N为BC中点,
∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,
分为三种情况:①如图1,

当⊙P切AB于M′时,连接PM′,
则PM′=cm,∠PM′M=90°,
∵∠PMM′=∠BMN=60°,
∴M′M=1cm,PM=2MM′=2cm,
∴QP=4cm﹣2cm=2cm,
即t=2;
②如图2,

当⊙P于AC切于A点时,连接PA,
则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,
∴PM=1cm,
∴QP=4cm﹣1cm=3cm,
即t=3,
当当⊙P于AC切于C点时,连接PC,
则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,
∴P′N=1cm,
∴QP=4cm 2cm 1cm=7cm,
即当3≤t≤7时,⊙P和AC边相切;
③如图1,

当⊙P切BC于N′时,连接PN′3
则PN′=cm,∠PM\N′N=90°,
∵∠PNN′=∠BNM=60°,
∴N′N=1cm,PN=2NN′=2cm,
∴QP=4cm 2cm 2cm=8cm,
即t=8;
故答案为:t=2或3≤t≤7或t=8.
点评:本题考查了等边三角形的性质,平行线的性质,勾股定理,含30度角的直角三角形性质,切线的性质的应用,主要考查学生综合运用定理进行计算的能力,注意要进行分类讨论啊
(2013?湖州)在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为2,则这个圆锥的侧面积是(  )
 
A.
4π
B.
3π
C.
2π
D.
2π


考点:
圆锥的计算.

分析:
首先根据勾股定理计算出母线的长,再根据圆锥的侧面积为:S侧=?2πr?l=πrl,代入数进行计算即可.

解答:
解:∵底面半径为1,高为2,
∴母线长==3.
底面圆的周长为:2π×1=2π.
∴圆锥的侧面积为:S侧=?2πr?l=πrl=×2π×3=3π.
故选B.

点评:
此题主要考查了圆锥的计算,关键是掌握圆锥的侧面积公式:S侧=?2πr?l=πrl.

(2013?湖州)如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.
(1)求BC的长;
(2)求证:PB是⊙O的切线.

考点:
切线的判定;等边三角形的判定与性质;垂径定理.

分析:
(1)首先连接OB,由弦AB⊥OC,劣弧AB的度数为120°,易证得△OBC是等边三角形,则可求得BC的长;
(2)由OC=CP=2,△OBC是等边三角形,可求得BC=CP,即可得∠P=∠CBP,又由等边三角形的性质,∠OBC=60°,∠CBP=30°,则可证得OB⊥BP,继而证得PB是⊙O的切线.

解答:
(1)解:连接OB,
∵弦AB⊥OC,劣弧AB的度数为120°,
∴弧BC与弧AC的度数为:60°,
∴∠BOC=60°,
∵OB=OC,
∴△OBC是等边三角形,
∴BC=OC=2;
(2)证明:∵OC=CP,BC=OC,
∴BC=CP,
∴∠CBP=∠CPB,
∵△OBC是等边三角形,
∴∠OBC=∠OCB=60°,
∴∠CBP=30°,
∴∠OBP=∠CBP ∠OBC=90°,
∴OB⊥BP,
∵点B在⊙O上,
∴PB是⊙O的切线.


点评:
此题考查了切线的判定、等边三角形的判定与性质以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.

(2013? 嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为( ▲ )
(A)2 (B)8
(C)2 (D)2
(2013? 嘉兴)在同一平面内,已知线段AO=2,⊙A的半径为1,将⊙A绕点O按逆时针方向旋转60o得到的像为⊙B,则⊙A与⊙B的位置关系为 ▲ .
(2013? 丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是
(2013? 丽水)如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F。
(1)求证:BE=CE;
(2)求∠CBF的度数;
(3)若AB=6,求的长。

(2013?宁波)两个圆的半径分别为2和3,当圆心距d=5时,这两个圆的位置关系是(  )
 
A.
内含
B.
内切
C.
相交
D.
外切


考点:
圆与圆的位置关系.

分析:
由两个圆的半径分别为2和3,圆心之间的距离是d=5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.

解答:
解:∵两个圆的半径分别为2和3,圆心之间的距离是d=5,
又∵2 3=5,
∴这两个圆的位置关系是外切.
故选D.

点评:
此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.

 
(2013?宁波)如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为 10π .

考点:
扇形面积的计算;勾股定理;垂径定理;圆心角、弧、弦的关系.

专题:
综合题.

分析:
根据弦AB=BC,弦CD=DE,可得∠BOD=90°,∠BOD=90°,过点O作OF⊥BC于点F,OG⊥CD于点G,在四边形OFCG中可得∠FCD=135°,过点C作CN∥OF,交OG于点N,判断△CNG、△OMN为等腰直角三角形,分别求出NG、ON,继而得出OG,在Rt△OGD中求出OD,即得圆O的半径,代入扇形面积公式求解即可.

解答:
解:

∵弦AB=BC,弦CD=DE,
∴点B是弧AC的中点,点D是弧CE的中点,
∴∠BOD=90°,
过点O作OF⊥BC于点F,OG⊥CD于点G,
则BF=FG=2,CG=GD=2,∠FOG=45°,
在四边形OFCG中,∠FCD=135°,
过点C作CN∥OF,交OG于点N,
则∠FCN=90°,∠NCG=135°﹣90°=45°,
∴△CNG为等腰三角形,
∴CG=NG=2,
过点N作NM⊥OF于点M,则MN=FC=2,
在等腰三角形MNO中,NO=MN=4,
∴OG=ON NG=6,
在Rt△OGD中,OD===2,
即圆O的半径为2,
故S阴影=S扇形OBD==10π.
故答案为:10π.

点评:
本题考查了扇形的面积计算、勾股定理、垂径定理及圆心角、弧之间的关系,综合考察的知识点较多,解答本题的关键是求出圆0的半径,此题难度较大.

 
(2013?宁波)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(﹣4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.

(1)求直线AB的函数解析式;
(2)当点P在线段AB(不包括A,B两点)上时.
①求证:∠BDE=∠ADP;
②设DE=x,DF=y.请求出y关于x的函数解析式;
(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.
考点:
一次函数综合题.

分析:
(1)设直线AB的函数解析式为y=kx 4,把(4,0)代入即可;
(2)①先证出△BOD≌△COD,得出∠BOD=∠CDO,再根据∠CDO=∠ADP,即可得出∠BDE=∠ADP,
②先连结PE,根据∠ADP=∠DEP ∠DPE,∠BDE=∠ABD ∠OAB,∠ADP=∠BDE,∠DEP=∠ABD,得出∠DPE=∠OAB,再证出∠DFE=∠DPE=45°,最后根据∠DEF=90°,得出△DEF是等腰直角三角形,从而求出DF=DE,即y=x;
(3)当=2时,过点F作FH⊥OB于点H,则∠DBO=∠BFH,再证出△BOD∽△FHB,===2,得出FH=2,OD=2BH,再根据∠FHO=∠EOH=∠OEF=90°,得出四边形OEFH是矩形,OE=FH=2,EF=OH=4﹣OD,根据DE=EF,求出OD的长,从而得出直线CD的解析式为y=x ,最后根据求出点P的坐标即可;
当=时,连结EB,先证出△DEF是等腰直角三角形,过点F作FG⊥OB于点G,同理可得△BOD∽△FGB,===,得出FG=8,OD=BG,再证出四边形OEFG是矩形,求出OD的值,再求出直线CD的解析式,最后根据即可求出点P的坐标.

解答:
解:(1)设直线AB的函数解析式为y=kx 4,
代入(4,0)得:4k 4=0,
解得:k=﹣1,
则直线AB的函数解析式为y=﹣x 4;
(2)①由已知得:
OB=OC,∠BOD=∠COD=90°,
又∵OD=OD,
∴△BOD≌△COD,
∴∠BOD=∠CDO,
∵∠CDO=∠ADP,
∴∠BDE=∠ADP,
②连结PE,
∵∠ADP是△DPE的一个外角,
∴∠ADP=∠DEP ∠DPE,
∵∠BDE是△ABD的一个外角,
∴∠BDE=∠ABD ∠OAB,
∵∠ADP=∠BDE,∠DEP=∠ABD,
∴∠DPE=∠OAB,
∵OA=OB=4,∠AOB=90°,
∴∠OAB=45°,
∴∠DPE=45°,
∴∠DFE=∠DPE=45°,
∵DF是⊙Q的直径,
∴∠DEF=90°,
∴△DEF是等腰直角三角形,
∴DF=DE,即y=x;
(3)当BD:BF=2:1时,
过点F作FH⊥OB于点H,
∵∠DBO ∠OBF=90°,∠OBF ∠BFH=90°,
∴∠DBO=∠BFH,
又∵∠DOB=∠BHF=90°,
∴△BOD∽△FHB,
∴===2,
∴FH=2,OD=2BH,
∵∠FHO=∠EOH=∠OEF=90°,
∴四边形OEFH是矩形,
∴OE=FH=2,
∴EF=OH=4﹣OD,
∵DE=EF,
∴2 OD=4﹣OD,
解得:OD=,
∴点D的坐标为(0,),
∴直线CD的解析式为y=x ,
由得:,
则点P的坐标为(2,2);
当=时,
连结EB,同(2)①可得:∠ADB=∠EDP,
而∠ADB=∠DEB ∠DBE,∠EDP=∠DAP ∠DPA,
∵∠DEP=∠DPA,
∴∠DBE=∠DAP=45°,
∴△DEF是等腰直角三角形,
过点F作FG⊥OB于点G,
同理可得:△BOD∽△FGB,
∴===,
∴FG=8,OD=BG,
∵∠FGO=∠GOE=∠OEF=90°,
∴四边形OEFG是矩形,
∴OE=FG=8,
∴EF=OG=4 2OD,
∵DE=EF,
∴8﹣OD=4 2OD,
OD=,
∴点D的坐标为(0,﹣),
直线CD的解析式为:y=﹣x﹣,
由得:,
∴点P的坐标为(8,﹣4),
综上所述,点P的坐标为(2,2)或(8,﹣4).




点评:
此题考查了一次函数的综合,用到的知识点是一次函数、矩形的性质、圆的性质,关键是综合运用有关知识作出辅助线,列出方程组.

 
(2013? 衢州)如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧()对应的圆心角(∠AOB)为120°,OC的长为2cm ,则三角板和量角器重叠部分的面积为 ▲ .

(2013? 衢州)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.
(1)求证:直线CD是⊙O的切线;
(2)若DE=2BC,求AD :OC的值.
证明:连结DO.∵AD//OC,
∴∠DAO=∠COB,∠ADO=∠COD.………………1分
又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.…2分
又∵CO=CO,OD=OB,∴△COD≌△COB………3分
∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线.……4分
(2)解:∵△COD≌△COB.∴CD=CB.…………………………5分
∵DE=2BC ∴ED=2CD. ………6分
∵ AD//OC,∴△EDA∽△ECO.…………………………7分
∴.…
(2013?绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为(  )

 
A.
4m
B.
5m
C.
6m
D.
8m

考点:
垂径定理的应用;勾股定理.3718684

分析:
连接OA,根据桥拱半径OC为5m,求出OA=5m,根据CD=8m,求出OD=3m,根据AD=求出AD,最后根据AB=2AD即可得出答案.

解答:
解:连接OA,
∵桥拱半径OC为5m,
∴OA=5m,
∵CD=8m,
∴OD=8﹣5=3m,
∴AD===4m,
∴AB=2AD=2×4=8(m);
故选;D.


点评:
此题考查了垂径定理的应用,关键是根据题意做出辅助线,用到的知识点是垂径定理、勾股定理.

(2013?绍兴)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是(  )
 
A.
90°
B.
120°
C.
150°
D.
180°

考点:
圆锥的计算.3718684

分析:
设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,然后设正圆锥的侧面展开图的圆心角是n°,利用弧长的计算公式即可求解.

解答:
解:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,
设正圆锥的侧面展开图的圆心角是n°,则=2πr,
解得:n=180.
故选D.

点评:
正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.

(2013?绍兴)小敏在作⊙O的内接正五边形时,先做了如下几个步骤:
(1)作⊙O的两条互相垂直的直径,再作OA的垂直平分线交OA于点M,如图1;
(2)以M为圆心,BM长为半径作圆弧,交CA于点D,连结BD,如图2.若⊙O的半径为1,则由以上作图得到的关于正五边形边长BD的等式是(  )

 
A.
BD2=OD
B.
BD2=OD
C.
BD2=OD
D.
BD2=OD


考点:
正多边形和圆.3718684

分析:
首先连接BM,根据题意得:OB=OA=1,AD⊥OB,BM=DM,然后由勾股定理可求得BM与OD的长,继而求得BD2的值.

解答:
解:如图2,连接BM,
根据题意得:OB=OA=1,AD⊥OB,BM=DM,
∵OA的垂直平分线交OA于点M,
∴OM=AM=OA=,
∴BM==,
∴DM=,
∴OD=DM﹣OM=﹣=,
∴BD2=OD2 OB2===OD.
故选C.


点评:
此题考查了勾股定理、线段垂直平分线的性质以及分母有理化的知识.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.

(2013?温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是
A.  B.  C.  D. 

(2013?温州)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连结AC,CE。
(1)求证:∠B=∠D;
(2)若AB=4,BC-AC=2,求CE的长。
(2013?广东)如题24图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,
BE⊥DC交DC的延长线于点E.
(1)求证:∠BCA=∠BAD;
(2)求DE的长;
(3)求证:BE是⊙O的切线.
(1)∵AB=DB,∴∠BDA=∠BAD,又∵∠BDA=∠BCA,∴∠BCA=∠BAD.
(2)在Rt△ABC中,AC=,易证△ACB∽△DBE,得,
∴DE=
(3)连结OB,则OB=OC,∴∠OBC=∠OCB,
∵四边形ABCD内接于⊙O,∴∠BAC ∠BCD=180°,
又∵∠BCE ∠BCD=180°,∴∠BCE=∠BAC,由(1)知∠BCA=∠BAD,∴∠BCE=∠OBC,∴OB∥DE
∵BE⊥DE,∴OB⊥BE,∴BE是⊙O的切线.
(2013?广州)如图7,在平面直角坐标系中,点O为坐标原点,点P在第一象限,与轴交于O,A两点,点A的坐标为(6,0),的半径为,则点P的坐标为 ____________.


(2013?广州)已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O 上运动(不与点B重合),连接CD,且CD=OA.
(1)当OC=时(如图12),求证:CD是⊙O的切线;
(2)当OC>时,CD所在直线于⊙O相交,设另一交点为E,连接AE.
①当D为CE中点时,求△ACE的周长;
②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE·ED的值;若不存在,请说明理由。

(2013?深圳)如图4,A、B、C是⊙O上的三点,∠AOB°,
则∠ACB的度数是
(2013?深圳)如图7,四边形ABCD内接于⊙O,BD是⊙O的直径,AECD于E,DA平分BDE
(1)(4分)求证:AE是⊙O的切线
(2)(5分)若DBC=30 o ,DE=1cm ,求BD的长

(2013?珠海)如图,?ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为(  )

 
A.
36°
B.
46°
C.
27°
D.
63°

考点:
圆周角定理;平行四边形的性质.3481324

分析:
根据BE是直径可得∠BAE=90°,然后在?ABCD中∠ADC=54°,可得∠B=54°,继而可求得∠AEB的度数.

解答:
解:∵四边形ABCD是平行四边形,∠ADC=54°,
∴∠B=∠ADC=54°,
∵BE为⊙O的直径,
∴∠BAE=90°,
∴∠AEB=90°﹣∠B=90°﹣54°=36°.
故选A.

点评:
本题考查了圆周角定理及平行四边形的性质,解答本题的关键是根据平行四边形的性质得出∠B=∠ADC.

(2013?珠海)若圆锥的母线长为5cm,地面半径为3cm,则它的测面展开图的面积为 15π cm2(结果保留π)
考点:
圆锥的计算.3481324

专题:
计算题.

分析:
先计算出圆锥底面圆的周长2π×3,再根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,然后根据扇形的面积公式计算即可.

解答:
解:圆锥的测面展开图的面积=×2π×3×5=15π(cm2).
故答案为15π.

点评:
本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了扇形的面积公式.

(2013?珠海)如图,⊙O经过菱形ABCD的三个顶点A、C、D,且与AB相切于点A
(1)求证:BC为⊙O的切线;
(2)求∠B的度数.[w~&ww%.zz*step.com]

考点:
切线的判定与性质;菱形的性质.3481324

分析:
(1)连结OA、OB、OC、BD,根据切线的性质得OA⊥AB,即∠OAB=90°,再根据菱形的性质得BA=BC,然后根据“SSS”可判断△ABC≌△CBO,则∠BOC=∠OAC=90°,于是可根据切线的判定方法即可得到结论;
(2)由△ABC≌△CBO得∠AOB=∠COB,则∠AOB=∠COB,由于菱形的对角线平分对角,所以点O在BD上,利用三角形外角性质有∠BOC=∠ODC ∠OCD,则∠BOC=2∠ODC,
由于CB=CD,则∠OBC=∠ODC,所以∠BOC=2∠OBC,根据∠BOC ∠OBC=90°可计算出∠OBC=30°,然后利用∠ABC=2∠OBC计算即可.

解答:
(1)证明:连结OA、OB、OC、BD,如图,
∵AB与⊙切于A点,
∴OA⊥AB,即∠OAB=90°,
∵四边形ABCD为菱形,
∴BA=BC,
在△ABC和△CBO中
,
∴△ABC≌△CBO,
∴∠BOC=∠OAC=90°,
∴OC⊥BC,
∴BC为⊙O的切线;
(2)解:∵△ABC≌△CBO,
∴∠AOB=∠COB,
∵四边形ABCD为菱形,
∴BD平分∠ABC,CB=CD,
∴点O在BD上,
∵∠BOC=∠ODC ∠OCD,
而OD=OC,
∴∠ODC=∠OCD,
∴∠BOC=2∠ODC,
而CB=CD,
∴∠OBC=∠ODC,
∴∠BOC=2∠OBC,
∵∠BOC ∠OBC=90°,
∴∠OBC=30°,
∴∠ABC=2∠OBC=60°.


点评:
本题考查了切线的判定与性质:过半径的外端点与半径垂直的直线为圆的切线;圆的切线垂直于过切点的半径.也考查了全等三角形相似的判定与性质以及菱形的性质.

(2013?哈尔滨)一个圆锥的侧面积是36 cm2,母线长是12cm,则这个圆锥的底面直径是 cm.
(2013?哈尔滨)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O 的半径为,CD=4,则弦AC的长为 .

(2013?哈尔滨) 如图,在△ABC中,以BC为直径作半圆0,交AB于点D,交AC于点E.AD=AE
(1)求证:AB=AC;
(2)若BD=4,BO=,求AD的长.

(2013?牡丹江)一个圆锥的母线长是9,底面圆的半径是6,则这个圆锥的侧面积是(  )
 
A.
81π
B.
27π
C.
54π
D.
18π


考点:
圆锥的计算.3718684

分析:
圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.

解答:
解:圆锥的侧面积=2π×6×9÷2=54π.
故选C.

点评:
本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.

(2013?牡丹江)如图,点C是⊙O的直径AB延长线上的一点,且有BO=BD=BC.
(1)求证:CD是⊙O的切线;
(2)若半径OB=2,求AD的长.

考点:
切线的判定;含30度角的直角三角形;勾股定理.3718684

专题:
证明题.

分析:
(1)由于BO=BD=BC,即DB为△ODC的边OC的中线,且有DB=OC,则∠ODC=90°,然后根据切线的判定方法即可得到结论;
(2)由AB为⊙O的直径得∠BDA=90°,而BO=BD=2,则AB=2BD=4,然后根据勾股定理可计算出AD.

解答:
(1)证明:连结OD,如图,
∵BO=BD=BC,
∴BD为△ODC的中线,且DB=OC,
∴∠ODC=90°,
∴OD⊥CD,
而OD为⊙O的半径,
∴CD是⊙O的切线;
(2)解:∵AB为⊙O的直径,
∴∠BDA=90°,
∵BO=BD=2,
∴AB=2BD=4,
∴AD==2.


点评:
本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了直角三角形的判定方法、勾股定理.

(2013?绥化)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为 2 .

考点:
垂径定理;勾股定理.

专题:
计算题.

分析:
连接OA,由AB垂直平分OC,求出OD的长,再利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用垂径定理求出AD的长,即可确定出AB的长.

解答:
解:连接OA,由AB垂直平分OC,得到OD=OC=1,
∵OC⊥AB,
∴D为AB的中点,
则AB=2AD=2=2=2.
故答案为:2.


点评:
此题考查了垂径定理,以及勾股定理,熟练掌握垂径定理是解本题的关键.

(2013?绥化)直角三角形两直角边长是3cm和4cm,以该三角形的边所在直线为轴旋转一周所得到的几何体的表面积是 24π,36π,π cm2.(结果保留π)
考点:
圆锥的计算;点、线、面、体.

专题:
分类讨论.

分析:
先利用勾股定理进行出斜边=5(cm),然后分类讨论:当以3cm的边所在直线为轴旋转一周时;当以4cm的边所在直线为轴旋转一周时;当以5cm的边所在直线为轴旋转一周时,再利用圆锥的侧面展开图为扇形和扇形的面积公式计算即可.

解答:
解:三角形斜边==5(cm),
当以3cm的边所在直线为轴旋转一周时,其所得到的几何体的表面积=π?42 ?5?2π?4=36π(cm2);
当以4cm的边所在直线为轴旋转一周时,其所得到的几何体的表面积=π?32 ?5?2π?3=24π(cm2);
当以5cm的边所在直线为轴旋转一周时,其所得到的几何体为共一个底面的两圆锥,其底面圆的面积=cm,所以此几何体的表面积=?2π??3 ?2π??4=π(cm2).
故答案为24π,36π,π.

点评:
本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.

(2013?绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为(  )

 
A.
4
B.
5
C.
6
D.
7


考点:
圆周角定理;圆心角、弧、弦的关系;相似三角形的判定与性质.

分析:
根据圆周角定理∠CAD=∠CDB,继而证明△ACD∽△DCE,设AE=x,则AC=x 4,利用对应边成比例,可求出x的值.

解答:
解:设AE=x,则AC=x 4,
∵AC平分∠BAD,
∴∠BAC=∠CAD,
∵∠CDB=∠BAC(圆周角定理),
∴∠CAD=∠CDB,
∴△ACD∽△DCE,
∴=,即=,
解得:x=5.
故选B.

点评:
本题考查了圆周角定理、相似三角形的判定与性质,解答本题的关键是得出∠CAD=∠CDB,证明△ACD∽△DCE.

 
(2013?河南)如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与
⊙O相切于点D,则下列结论中不一定正确的是
A. AG=BG B. AB//EF
C. AD//BC D. ∠ABC=∠ADC

(2013河南)已知扇形的半径为4 cm,圆心角为120°,则此扇形的弧长是_________cm.
(2013兰州)⊙O1的半径为1cm,⊙O2的半径为4cm,圆心距O1O2=3cm,这两圆的位置关系是(  )
 A.相交B.内切C.外切D.内含
考点:圆与圆的位置关系.
分析:两圆的位置关系有5种:①外离;②外切;③相交;④内切;⑤内含.
若d>R r,则两圆相离;若d=R r,则两圆外切;若d=R﹣r,则两圆内切;若R﹣r<d<R r,则两圆相交.本题可把半径的值代入,看符合哪一种情况.
解答:解:∵R﹣r=4﹣1=3,O1O2=3cm.
∴两圆内切.
故选B.
点评:本题主要考查两圆的位置关系与数量之间的联系. 
(2013兰州)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为(  )

 A.3cmB.4cmC.5cmD.6cm
考点:垂径定理的应用;勾股定理.
分析:过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求r的值.
解答:解:如图所示:过点O作OD⊥AB于点D,连接OA,
∵OD⊥AB,
∴AD=AB=×8=4cm,
设OA=r,则OD=r﹣2,
在Rt△AOD中,OA2=OD2 AD2,即r2=(r﹣2)2 42,
解得r=5cm.
故选C.

点评:本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 
(2013兰州)圆锥底面圆的半径为3m,其侧面展开图是半圆,则圆锥母线长为(  )
 A.3cmB.6cmC.9cmD.12cm
考点:圆锥的计算.
分析:首先求得圆锥的底面周长,然后根据圆的周长公式即可求得母线长.
解答:解:圆锥的底面周长是:6πcm,
设母线长是l,则lπ=6π,
解得:l=6.
故选B.
点评:考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.
(2013兰州)如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒,点E在量角器上对应的读数是 度.

考点:圆周角定理.
分析:首先连接OE,由∠ACB=90°,易得点E,A,B,C共圆,然后由圆周角定理,求得点E在量角器上对应的读数.
解答:解:连接OE,
∵∠ACB=90°,
∴A,B,C在以点O为圆心,AB为直径的圆上,
∴点E,A,B,C共圆,
∵∠ACE=3×24=72°,
∴∠AOE=2∠ACE=144°.
∴点E在量角器上对应的读数是:144°.
故答案为:144.

点评:本题考查的是圆周角定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
(2013兰州)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=6cm,AE=3cm,求⊙O的半径.

考点:切线的判定;平行线的判定与性质;圆周角定理;相似三角形的判定与性质.
专题:几何综合题.
分析:(1)连接OD,根据平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切线.
(2)由直角三角形的特殊性质,可得AD的长,又有△ACD∽△ADE.根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.
解答:(1)证明:连接OD.
∵OA=OD,
∴∠OAD=∠ODA.(1分)
∵∠OAD=∠DAE,
∴∠ODA=∠DAE.(2分)
∴DO∥MN.(3分)
∵DE⊥MN,
∴∠ODE=∠DEM=90°.
即OD⊥DE.(4分)
∵D在⊙O上,
∴DE是⊙O的切线.(5分)
(2)解:∵∠AED=90°,DE=6,AE=3,
∴.(6分)
连接CD.
∵AC是⊙O的直径,
∴∠ADC=∠AED=90°.(7分)
∵∠CAD=∠DAE,
∴△ACD∽△ADE.(8分)
∴.
∴.
则AC=15(cm).(9分)
∴⊙O的半径是7.5cm.(10分)

点评:本题考查常见的几何题型,包括切线的判定,线段等量关系的证明及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.
(2013?黔西南州)如图1所示,线段AB是上一点,,过点C作的切线交AB的延长线于点E,则等于
A、 B、 C、 D、

(2013?黔西南州)如图4所示中,已知∠BAC=∠CDA=20°,则∠ABO的度数为 。


(2013?黔西南州)如图6所示的一扇形纸片,圆心角∠AOB为120°,弦AB的长为,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面的半径为__ cm。


(2013?黔西南州)如图8所示,AB是的直径,弦CD⊥AB于点E,点P在上,∠1=∠C。
(1)求证:CB∥PD。
(2)若BC=3,sinP=,求的直径。


(2013?乌鲁木齐)如图,半圆O与等腰直角三角形两腰CA、CB分别切于D、E两点,直径FG在AB上,若BG=﹣1,则△ABC的周长为(  )

 
A.
4 2
B.
6
C.
2 2
D.
4


考点:
切线的性质.3797161

分析:
首先连接OD,OE,易证得四边形ODCE是正方形,△OEB是等腰直角三角形,首先设OE=r,由OB=OE=r,可得方程:﹣1 r=r,解此方程,即可求得答案.

解答:
解:连接OD,OE,
∵半圆O与等腰直角三角形两腰CA、CB分别切于D、E两点,
∴∠C=∠OEB=∠OEC=∠ODC=90°,
∴四边形ODCE是矩形,
∵OD=OE,
∴四边形ODCE是正方形,
∴CD=CE=OE,
∵∠A=∠B=45°,
∴△OEB是等腰直角三角形,
设OE=r,
∴BE=OG=r,
∴OB=OG BG=﹣1 r,
∵OB=OE=r,
∴﹣1 r=r,
∴r=1,
∴AC=BC=2r=2,AB=2OB=2×(1 ﹣1)=2.
∴△ABC的周长为:AC BC AB=4 2.
故选A.


点评:
此题考查了切线的性质、正方形的判定与性质以及等腰直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.

 
(2013?乌鲁木齐)如图.点A、B、C、D在⊙O上,AC⊥BD于点E,过点O作OF⊥BC于F,求证:
(1)△AEB∽△OFC;
(2)AD=2FO.

考点:
圆周角定理;垂径定理;相似三角形的判定与性质.3797161

专题:
证明题.

分析:
(1)连接OB,根据圆周角定理可得∠BAE=∠BOC,根据垂径定理可得∠COF=∠BOC,再根据垂直的定义可得∠OFC=∠AEB=90°,然后根据两角对应相等,两三角形相似证明即可;
(2)根据相似三角形对应边成比例可得=,再根据圆周角定理求出∠D=∠BCE,∠DAE=∠CBE,然后求出△ADE和△BCE相似,根据相似三角形对应边成比例可得=,从而得到=,再根据垂径定理BC=2FC,代入整理即可得证.

解答:
证明:(1)如图,连接OB,则∠BAE=∠BOC,
∵OF⊥BC,
∴∠COF=∠BOC,
∴∠BAE=∠COF,
又∵AC⊥BD,OF⊥BC,
∴∠OFC=∠AEB=90°,
∴△AEB∽△OFC;
(2)∵△AEB∽△OFC,
∴=,
由圆周角定理,∠D=∠BCE,∠DAE=∠CBE,
∴△ADE∽△BCE,
∴=,
∴=,
∵OF⊥BC,
∴BC=2FC,
∴AD=?FO=2FO,
即AD=2FO.


点评:
本题考查了圆周角定理,垂径定理,相似三角形的判定与性质,熟记两个定理并准确识图找出相等的角从而得到三角形相似是解题的关键.

(2013?江西)平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是 .
【答案】2,3,4.
【考点解剖】 本题主要考查学生阅读理解能力、作图能力、联想力与思维的严谨性、周密性,所涉及知识点有等腰三角形、圆的有关知识,分类讨论思想,不等式组的整数解,在运动变化中抓住不变量的探究能力.
【解题思路】 由∠AOB=120°,AO=BO=2画出一个顶角为120°、腰长为2的等腰三角形,由与互补,是的一半,点C是动点想到构造圆来解决此题.
【解答过程】 
【方法规律】 构造恰当的图形是解决此类问题的关键.
【关键词】 圆 整数值
(2013?江西)如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.
(1)在图1中,画出△ABC的三条高的交点;
(2)在图2中,画出△ABC中AB边上的高.
【答案】 (1)如图1,点P就是所求作的点;
(2)如图2,CD为AB边上的高.
 
【考点解剖】 本题属创新作图题,是江西近年热点题型之一.考查考生对圆的性质的理解、读图能力,题(1)是要作点,题(2)是要作高,都是要解决直角问题,用到的知识就是“直径所对的圆周角为直角”.
【解题思路】 图1点C在圆外,要画三角形的高,就是要过点B作AC的垂线,过点A作BC的垂线,但题目限制了作图的工具(无刻度的直尺,只能作直线或连接线段),说明必须用所给图形本身的性质来画图(这就是创新作图的魅力所在),作高就是要构造90度角,显然由圆的直径就应联想到“直径所对的圆周角为90度”.设AC与圆的交点为E, 连接BE,就得到AC边上的高BE;同理设BC与圆的交点为D, 连接AD,就得到BC边上的高AD,则BE与AD的交点就是△ABC的三条高的交点;题(2)是题(1)的拓展、升华,三角形的三条高相交于一点,受题(1)的启发,我们能够作出△ABC的三条高的交点P,再作射线PC与AB交于点D,则CD就是所求作的AB边上的高.
【解答过程】 略.
【方法规律】 认真分析揣摩所给图形的信息,结合题目要求思考.
【关键词】 创新作图 圆 三角形的高
(2013?江西)如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB,如图2所示,量得连杆OA长为10cm,雨刮杆AB长为48cm,∠OAB=120°.若启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,如图3所示.
(1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(结果精确到0.01)
(2)求雨刮杆AB扫过的最大面积.(结果保留π的整数倍)
(参考数据:sin60°=,cos60°=,tan60°=,≈26.851,可使用科学计算器)

【答案】解:(1)雨刮杆AB旋转的最大角度为180° .
连接OB,过O点作AB的垂线交BA的延长线于EH,
∵∠OAB=120°,
∴∠OAE=60°
在Rt△OAE中,
∵∠OAE=60°,OA=10,
∴sin∠OAE==,
∴OE=5,
∴AE=5.
∴EB=AE AB=53,
在Rt△OEB中,
∵OE=5,EB=53,
∴OB===2≈53.70;
(2)∵雨刮杆AB旋转180°得到CD,即△OCD与△OAB关于点O中心对称,
∴△BAO≌△OCD,∴S△BAO=S△OCD,
∴雨刮杆AB扫过的最大面积S=π(OB2-OA2)
=1392π.
【考点解剖】 本题考查的是解直角三角形的应用,以及扇形面积的求法,难点是考生缺乏生活经验,弄不懂题意(提供的实物图也不够清晰,人为造成一定的理解困难).
【解题思路】 将实际问题转化为数学问题,(1)AB旋转的最大角度为180°;在△OAB中,已知两边及其夹角,可求出另外两角和一边,只不过它不是直角三角形,需要转化为直角三角形来求解,由∠OAB=120°想到作AB边上的高,得到一个含60°角的Rt△OAE和一个非特殊角的Rt△OEB.在Rt△OAE中,已知∠OAE=60°,斜边OA=10,可求出OE、AE的长,进而求得Rt△OEB中EB的长,再由勾股定理求出斜边OB的长;(2)雨刮杆AB扫过的最大面积就是一个半圆环的面积(以OB、OA为半径的半圆面积之差).
【解答过程】 略.
【方法规律】 将斜三角形转化为直角三角形求解.在直角三角形中,已知两边或一边一角都可求出其余的量.
【关键词】 刮雨器 三角函数 解直角三角形 中心对称 扇形的面积
22.(2013?江西)如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.
(1)证明PA是⊙O的切线;
(2)求点B的坐标;
(3)求直线AB的解析式.

【答案】(1)证明:依题意可知,A(0,2)
∵A(0,2),P(4,2),
∴AP∥x轴 .
∴∠OAP=90°,且点A在⊙O上,
∴PA是⊙O的切线;
(2)解法一:连接OP,OB,作PE⊥x轴于点E,BD⊥x轴于点D,
∵PB切⊙O于点B,
∴∠OBP=90°,即∠OBP=∠PEC,
又∵OB=PE=2,∠OCB=∠PEC.
∴△OBC≌△PEC.
∴OC=PC.
(或证Rt△OAP≌△OBP,再得到OC=PC也可)
设OC=PC=x,
则有OE=AP=4,CE=OE-OC=4-x,
在Rt△PCE中,∵PC2=CE2 PE2,
∴x2=(4-x)2 22,解得x=,…………………… 4分
∴BC=CE=4-=,
∵OB·BC=OC·BD,即×2×=××BD,∴BD=.
∴OD===,
由点B在第四象限可知B(,);

解法二:连接OP,OB,作PE⊥x轴于点E,BD⊥y轴于点D,
∵PB切⊙O于点B,
∴∠OBP=90°即∠OBP=∠PEC.
又∵OB=PE=2,∠OCB=∠PEC,
∴△OBC≌△PEC.
∴OC=PC(或证Rt△OAP≌△OBP,再得到OC=PC也可)
设OC=PC=x,
则有OE=AP=4,CE=OE-OC=4-x,
在Rt△PCE中,∵PC2=CE2+PE2,
∴x2=(4-x)2 22,解得x=,……………………………… 4分
∴BC=CE=4-=,
∵BD∥x轴,
∴∠COB=∠OBD,
又∵∠OBC=∠BDO=90°,
∴△OBC∽△BDO, ∴==,
即==.
∴BD=,OD=.
由点B在第四象限可知B(,);
(3)设直线AB的解析式为y=kx b,
由A(0,2),B(,),可得;
解得∴直线AB的解析式为y=-2x 2.
【考点解剖】 本题考查了切线的判定、全等、相似、勾股定理、等面积法求边长、点的坐标、待定系数法求函数解析式等.
【解题思路】(1) 点A在圆上,要证PA是圆的切线,只要证PA⊥OA(∠OAP=90°)即可,由A、P两点纵坐标相等可得AP∥x轴,所以有∠OAP ∠AOC=180°得∠OAP=90°;(2) 要求点B的坐标,根据坐标的意义,就是要求出点B到x轴、y轴的距离,自然想到构造Rt△OBD,由PB又是⊙O的切线,得Rt△OAP≌△OBP,从而得△OPC为等腰三角形,在Rt△PCE中, PE=OA=2, PC CE=OE=4,列出关于CE的方程可求出CE、OC的长,△OBC的三边的长知道了,就可求出高BD,再求OD即可求得点B的坐标;(3)已知点A、点B的坐标用待定系数法可求出直线AB的解析式.
【解答过程】 略.
【方法规律】 从整体把握图形,找全等、相似、等腰三角形;求线段的长要从局部入手,若是直角三角形则用勾股定理,若是相似则用比例式求,要掌握一些求线段长的常用思路和方法.
(2013,河北)如图7,AB是⊙O的直径,弦CD⊥AB,∠C = 30°,
CD = 23.则S阴影=
A.πB.2π
C. D.π
(2013,河北)如图16,△OAB中,OA = OB = 10,∠AOB = 80°,以点O为圆心,6为半径的优弧分别交OA,OB于点M,N.
(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP′.
求证:AP = BP′;
(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;
(3)设点Q在优弧上,当△AOQ的面积最大时,直接写出∠BOQ的度数.


(2013?安徽)已知半径分别为4cm和7cm的两圆相交,则它们的圆心距可能是(C )
A.1cm B.3cm C.10cm D.15cm
(2013?安徽)如图,在平面直角坐标系中,⊙M与y轴相切于原点O,平行于x轴的直线交⊙M于P,Q两点,点P在点Q的右方,若点P的坐标是(-1,2),则点Q的坐标是( A )
A.(-4,2) B.(-4.5,2)
C.(-5,2) D.(-5.5,2)
(2013?安徽)如图(1),∠ABC=90°,O为射线BC上一点,OB = 4,以点O为圆心,BO长为半径作⊙O交BC于点D、E.
(1)当射线BA绕点B按顺时针方向旋转多少度时与⊙O相切?请说明理由.
(2)若射线BA绕点B按顺时针方向旋转与⊙O相交于M、N两点(如图(2)),MN=,求的长.

.(1)当射线BA绕点B按顺时针方向旋转60度或120度时与⊙O相切.……2分
理由:当BA绕点B按顺时针方向旋转60度到B A′的位置.
则∠A′BO=30°,
过O作OG⊥B A′垂足为G,
∴OG=OB=2. …………………………4分
∴B A′是⊙O的切线.……………………5分
同理,当BA绕点B按顺时针方向旋转120度到B A″的位置时,
B A″也是⊙O的切线.…………………6分
(如只有一个答案,且说理正确,给2分)
(或:当BA绕点B按顺时针方向旋转到B A′的位置时,BA与⊙O相切,
设切点为G,连结OG,则OG⊥AB,
∵OG=OB,∴∠A′BO=30°.
∴BA绕点B按顺时针方向旋转了60度.
同理可知,当BA绕点B按顺时针方向旋转到B A″的位置时,BA与⊙O相切,BA绕点B按顺时针方向旋转了120度.)
(2)∵MN=,OM=ON=2,
∴MN 2 = OM 2 ON2,…………………8分
∴∠MON=90°. …………………9分
∴的长为l=2x90π/180=π.…………12分
(2013?上海)在⊙中,已知半径长为3,弦长为4,那么圆心到的距离为___________.
(2013?上海)在矩形中,点是边上的动点,联结,线段的垂直平分线交边于点,
垂足为点,联结(如图10).已知,,设.
(1)求关于的函数解析式,并写出的取值范围;
(2)当以长为半径的⊙P和以长为半径的⊙Q外切时,求的值;
(3)点在边上,过点作直线的垂线,垂足为,如果,求的值.


(2013?毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径(  )

 
A.
5
B.
10
C.
8
D.
6


考点:
垂径定理;勾股定理.

专题:
探究型.

分析:
连接OB,先根据垂径定理求出BC的长,在Rt△OBC中利用勾股定理即可得出OB的长度.

解答:
解:连接OB,
∵OC⊥AB,AB=8,
∴BC=AB=×8=4,
在Rt△OBC中,OB===.
故选A.


点评:
本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.

 
(2013?毕节地区)在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为(  )

 
A.
2,22.5°
B.
3,30°
C.
3,22.5°
D.
2,30°


考点:
切线的性质;等腰直角三角形.

分析:
首先连接AO,由切线的性质,易得OD⊥AB,即可得OD是△ABC的中位线,继而求得OD的长;根据圆周角定理即可求出∠MND的度数.

解答:
解:连接OA,
∵AB与⊙O相切,
∴OD⊥AB,
∵在等腰直角三角形ABC中,AB=AC=4,O为BC的中点,
∴AO⊥BC,
∴OD∥AC,
∵O为BC的中点,
∴OD=AC=2;
∵∠DOB=45°,
∴∠MND=∠DOB=22.5°,
故选A.


点评:
此题考查了切线的性质、圆周角定理、切线长定理以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.


(2013?毕节地区)正八边形的一个内角的度数是 135  度.
考点:
多边形内角与外角.

分析:
首先根据多边形内角和定理:(n﹣2)?180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数.

解答:
解:正八边形的内角和为:(8﹣2)×180°=1080°,
每一个内角的度数为:×1080°=135°.
故答案为:135.

点评:
此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)?180 (n≥3)且n为整数).

 
(2013?毕节地区)已知⊙O1与⊙O2的半径分别是a,b,且a、b满足,圆心距O1O2=5,则两圆的位置关系是 外切 .
考点:
圆与圆的位置关系;非负数的性质:绝对值;非负数的性质:算术平方根.

分析:
首先根据求得a、b的值,然后根据半径与圆心距的关系求解即可.

解答:
解:∵,
∴a﹣2=0,3﹣b=0
解得:a=2,b=3
∵圆心距O1O2=5,
∴2 3=5
∴两圆外切,
故答案为:外切.

点评:
此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.

(2013?毕节地区)已知圆锥的底面半径是2cm,母线长为5cm,则圆锥的侧面积是 10π  cm3(结果保留π)
考点:
圆锥的计算.

分析:
圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.

解答:
解:圆锥的侧面积=2π×2×5÷2=10π.
故答案为:10π.

点评:
本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.

 
(2013?昆明)如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90゜的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是 cm

(2013?昆明)已知:如图:AC是☉O的直径,BC是☉O的弦,点P是☉O外一点,PBA=C。
(1)求证:PB是☉O的切线;
(2)若OP∥BC,且OP=8,BC=2,求☉O的半径。


(2013?邵阳)若⊙O1和⊙O2的半径分别为3cm和4cm,圆心距d=7cm,则这两圆的位置是(  )
 
A.
相交
B.
内切
C.
外切
D.
外离


考点:
圆与圆的位置关系.

分析:
本题直接告诉了两圆的半径及圆心距,根据数量关系与两圆位置关系的对应情况便可直接得出答案.

解答:
解:∵⊙O1和⊙O2的半径分别为3cm和4cm,圆心距O1O2=7cm,
∴O1O2=3 4=7,
∴两圆外切.
故选C.

点评:
本题主要考查圆与圆的位置关系,外离,则P>R r;外切,则P=R r;相交,则R﹣r<P<R r;内切,则P=R﹣r;内含,则P<R﹣r.
(P表示圆心距,R,r分别表示两圆的半径).

 
(2013?邵阳)如图所示,弦AB、CD相交于点O,连结AD、BC,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是 ∠A与∠C(答案不唯一) .

考点:
圆周角定理.

专题:
开放型.

分析:
直接根据圆周角定理解答即可.

解答:
解:∵∠A与∠C是同弧所对的圆周角,
∴∠A=∠C(答案不唯一).
故答案为:∠A=∠C(答案不唯一).

点评:
本题考查的是圆周角定理,此题属开放性题目,答案不唯一.

)(2013?邵阳)如图所示,某窗户有矩形和弓形组成,已知弓形的跨度AB=3cm,弓形的高EF=1cm,现计划安装玻璃,请帮工程师求出所在圆O的半径r.

考点:
垂径定理的应用;勾股定理.

分析:
根据垂径定理可得AF=AB,再表示出AO、OF,然后利用勾股定理列式进行计算即可得解.

解答:
解:∵弓形的跨度AB=3cm,EF为弓形的高,
∴OE⊥AB,
∴AF=AB=cm,
∵所在圆O的半径为r,弓形的高EF=1cm,
∴AO=r,OF=r﹣1,
在Rt△AOF中,AO2=AF2 OF2,
即r2=()2 (r﹣1)2,
解得r=cm.
答:所在圆O的半径为cm.

点评:
本题考查了垂径定理的应用,勾股定理的应用,此类题目通常采用把半弦,弦心距,半径三者放到同一个直角三角形中,利用勾股定理解答.

(2013?柳州)下列四个图中,∠x是圆周角的是(  )
 
A.

B.

C.

D.



考点:
圆周角定理

分析:
由圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角,即可求得答案.

解答:
解:根据圆周角定义:
即可得∠x是圆周角的有:C,不是圆周角的有:A,B,D.
故选C.

点评:
此题考查了圆周角定义.此题比较简单,解题的关键是理解圆周角的定义.

 (2013?柳州)如图,⊙O的直径AB=6,AD、BC是⊙O的两条切线,AD=2,BC=.
(1)求OD、OC的长;
(2)求证:△DOC∽△OBC;
(3)求证:CD是⊙O切线.

考点:
切线的判定与性质;相似三角形的判定与性质.

专题:
计算题.

分析:
(1)由AB的长求出OA与OB的长,根据AD,BC为圆的切线,利用切线的性质得到三角形AOD与三角形BOC都为直角三角形,利用勾股定理即可求出OD与OC的长;
(2)过D作DE垂直于BC,可得出BE=AD,DE=AB,在直角三角形DEC中,利用勾股定理求出CD的长,根据三边对应成比例的三角形相似即可得证;
(3)过O作OF垂直于CD,根据(2)中两三角形相似,利用相似三角形的对应角相等得到一对角相等,利用AAS得到三角形OCF与三角形OCB全等,由全等三角形的对应边相等得到OF=OB,即OF为圆的半径,即可确定出CD为圆O的切线.

解答:
(1)解:∵AD、BC是⊙O的两条切线,
∴∠OAD=∠OBC=90°,
在Rt△AOD与Rt△BOC中,OA=OB=3,AD=2,BC=,
根据勾股定理得:OD==,OC==;
(2)证明:过D作DE⊥BC,可得出∠DAB=∠ABE=∠BED=90°,
∴四边形ABED为矩形,
∴BE=AD=2,DE=AB=6,EC=BC﹣BE=,
在Rt△EDC中,根据勾股定理得:DC==,
∵===,
∴△DOC∽△OBC;
(3)证明:过O作OF⊥DC,交DC于点F,
∵△DOC∽△OBC,
∴∠BCO=∠FCO,
∵在△BCO和△FCO中,
,
∴△BCO≌△FCO(AAS),
∴OB=OF,
则CD是⊙O切线.


点评:
此题考查了切线的判定与性质,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,熟练掌握切线的判定与性质是解本题的关键.

 
(2013?铜仁)⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是( )
A.相切 B.相交 C.相离 D. 不能确定
(2013?铜仁)如图,AC是⊙O的直径,P是⊙O外一点,连结PC交⊙O于B,连结PA、AB,且满足PC=50,PA=30,PB=18.
(1)求证:△PAB∽△PCA;
(2)求证:AP是⊙O的切线.
(1)证明:∵PC=50,PA=30,PB=18
∴ 
…………………………3分
又∵∠APC=∠BPA……………………5分
∴△PAB∽△PCA…………………………6分
(2)证明:∵AC是⊙O的直径 ∴∠ABC=90………………7分
∴∠ABP=90°………………………………………………8分
又∵△PAB∽△PCA
∴∠PAC=∠ABP…………………………10分
∴∠PAC=90°
∴PA是⊙O的切线……………………………………
(2013?临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是(  )

 
A.
75°
B.
60°
C.
45°
D.
30°


考点:
圆周角定理.

分析:
首先连接OC,由OB=OC=OA,∠CBO=45°,∠CAO=15°,根据等边对等角的性质,可求得∠OCB与∠OCA的度数,即可求得∠ACB的度数,又由圆周角定理,求得∠AOB的度数.

解答:
解:连接OC,
∵OB=OC=OA,∠CBO=45°,∠CAO=15°,
∴∠OCB=∠OBC=45°,∠OCA=∠OAC=15°,
∴∠ACB=∠OCB﹣∠OCA=30°,
∴∠AOB=2∠ACB=60°.
故选B.


点评:
此题考查了圆周角定理以及等腰三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.

 
(2013?临沂)如图,在△ABC中,∠ACB=90°,E为BC上一点,以CE为直径作⊙O,AB与⊙O相切于点D,连接CD,若BE=OE=2.
(1)求证:∠A=2∠DCB;
(2)求图中阴影部分的面积(结果保留π和根号).

考点:
切线的性质;扇形面积的计算

分析:
(1)连接OD,求出∠ODB=90°,求出∠B=30°,∠DOB=60°,求出∠DCB度数,关键三角形内角和定理求出∠A,即可得出答案;
(2)根据勾股定理求出BD,分别求出△ODB和扇形DOE的度数,即可得出答案.

解答:
(1)证明:连接OD,
∵AB是⊙O切线,
∴∠ODB=90°,
∴BE=OE=OD=2,
∴∠B=30°,∠DOB=60°,
∵OD=OC,
∴∠DCB=∠ODC=∠DOB=30°,
∵在△ABC中,∠ACB=90°,∠B=30°,
∴∠A=60°,
∴∠A=2∠DCB;
(2)解:∵∠ODB=90°,OD=2,BO=2 2=4,由勾股定理得:BD=2,
∴阴影部分的面积S=S△ODB﹣S扇形DOE=×2×2﹣=2﹣π.


点评:
本题考查了含30度角的直角三角形性质,勾股定理,扇形的面积,勾股定理,切线的性质等知识点的应用,主要考查学生综合性运用性质进行推理和计算的能力.

 
(2013?茂名)如图是李大妈跳舞用的扇子,这个扇形AOB的圆心角,半径OA=3,则弧AB的长度为 (结果保留).

(2013?茂名)如图,在中,弦AB与弦CD相交于点G,于点E,过点B的直线与CD的延长线交于点F,.
(1)若,求证:BF 是的切线;
(2)若,,请用表示的半径;
(3)求证:.
(2013?大兴安岭)一个圆锥的母线长是9,底面圆的半径是6,则这个圆锥的侧面积是
A.81 B. 27 C.54 D.18
(2013?大兴安岭)如图,点C是⊙O的直径AB 延长线上的一点,且有BO=BD=BC.
(1)求证:CD是⊙O的切线;
(2)若半径OB=2,求AD的长.


(2013?红河)已知扇形的半径是,圆心角是,则该扇形的弧长为(结果保留).





免费下载地址下载地址1  下载地址2  

录入:admin审核:admin
最新文章 更多内容
普通中考2013全国中考数学试题分类汇编-坐标变换
普通中考2013全国中考数学试题分类汇编-轴对称
普通中考2013全国中考数学试题分类汇编-正多边形和圆
普通中考2013全国中考数学试题分类汇编-整式
普通中考2013全国中考数学试题分类汇编-有理数
普通中考2013全国中考数学试题分类汇编-因式分解
普通中考2013全国中考数学试题分类汇编-一元一次方程
普通中考2013全国中考数学试题分类汇编-一元二次方程
普通中考2013全国中考数学试题分类汇编-一次函数
普通中考2013全国中考数学试题分类汇编-旋转
相关软件
2013全国中考数学试题分类汇编-坐标变换
2013全国中考数学试题分类汇编-轴对称
2013全国中考数学试题分类汇编-整式
2013全国中考数学试题分类汇编-有理数
2013全国中考数学试题分类汇编-因式分解
更多内容
| 设为首页 | 加入收藏 | 联系站长 | 友情链接 | 版权申明 | 管理登录 |